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ABSTRACT 

Le bel," T. and Bastin, G., 1985. Variogram identification by the mean-squared interpo­
lation error method with application to hydrologic fields. J. Hydro!., 77: 31-56 . 

. A systematic presentation of the ·~rrre·a~ ;:~~d)interpolation error'' (MSIE) method 
for variogram identification is given,E;Jihe-presentation involves a theoretical analysis of 
the MSIE method under the (realistic) assumption that the parametric variogram model is 
only an approximation of the true-field variogram. 

The application of the MSIE method to the identification of variogram models for a 
piezometric field and a rainfall field is described in some detail. 

1. INTRODUCTION 

Real-life applications of BLU (best linear unbiased) interpolation in 
random fields, require, in most cases, a preliminary identification of a 
parametric model for the variogram of the field of interest. 

This id.enti!i~atio~ ~s most often perfor~ed by ,aj~~~~~~quares_!j~ting (or 
even an mtmtlve frttmg) of the parametnc model to an-'-'expenmental" 
variogram. Numerous examples can be found in the books by David (1977), 
and Journel and Huijbregts (1978), and also, for hydrologic applications, in 
the papers by Delfiner and Delhomme (1975), Creutin and Obled (1982), 
and Bastin et al. (1984), among many others. Various generalisations of the 
least-squares approach have been recently proposed by Kitanidis (1983) in 
the case of generalized covariances being linear in the parameters. 

The variogram identification can also be performed by minimizing a 
functional of a set of observed interpolation errors. The "mean squared 
im:t ... .f:Jola~ron error" (MSIE) method discussed in this paper and a maximum 
likelihood method recently described by Bastin and Gevers (1985) lie in this 
ca+f:;~"'~'· The MSIE approach has been previously used by Davis and David 
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(1978), Gambolati and Volpi (1979), and Hughes and Lettenmaier (1981) 
for the calibration of the variogram parameters. An MSIE criterion is also 
included in the BLUEPACK software (e.g., Delfiner, 1976), in order to com­
pare variogram models [a typical application can be found in Chua and Bras 
(1982)]. 

The objective of this paper is to give a fairly systematic presentation of 
the MSIE method and to illustrate it with two real-life hydrologic 
applications. 

The basic idea which underlies the determination of the identification 
criterion is that if a variogram model is identified in order to design an 
optimal interpolator, then it makes sense to use the minimization of the 
interpolation errors as a criterion for the selection of the best variogram 
model. The presentation involves a theoretical asymptotic analysis of the 
MSIE method under the assumption that the parametric variogram model is 
only an approximation of the true-field variogram: this is certainly a realistic 
point of view since in most practical applications very simple (often 
isotropic) models are adopted. A general asymptotic property is demon­
strated which does not require any specific assumption on the probability 
density of the field. 

The basic concepts and assumptions are presented in Section 2. The 
identification method is stated in Sections 3 and 4 together with the theo­
retical asymptotic analysis aforementioned. Then we describe in some 
detail the application of the method to the identification of variogr;am 
models for a piezometric field (Section 5) and a rainfall field (Section 6). 

2. BASIC CONCEPTS AND ASSUMPTIONS 

The variogram identification problem is based on four entities: 
(a) a random field F; 
(b) a set of point-wise scattered observations of a realization ofF; 
(c) a set of parametric models M; and 
(d) a criterion. 
Identification, then, is to select that model within the set of models that 

describes the data best according to these criteria. In this section, we de­
scribe entities (a), (b) and (c) in some detail and we state assumptions re­
garding their properties that will be used later in the paper. 

2.1. The random field F and the data 

According to the usual definition of random functions (e.g., Papoulis, 
1965 ), F is a family of real valued functions: 

F = {z(u,w)iuE'R2 ,wEn} (1) 

where u is a space coordinate, u = (x, y); and w belongs to an appropriate 
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probability space n. Without loss of generality, we use the notation z(u) to 
represent the field, omitting the dependence on w. When u is fixed in ~ 2 , 

z(u) denotes a random variable. We use the same notation z(u) for a par­
ticular realization- this should, however, not lead to any confusion. 

Assumption AI: The random field F is intrinsic (Matheron, 1965), i.e.: 
(a) the (unknown) mean is stationary: 

m = E[z(u)], u E IR2 

(b) the (unknown) variogram is stationary: 

with h = v-u 

for any pair (u, u) of points in !R 2
• 

(2) 

(3) 

Definition: A generalized increment (GI), 17(u 1, u 2 , •• • , un ), is a linear 
combination of the form: 

n n 

??(UJ,u2, ... ,un) = L iJ.;Z(U;) with L iJ.; = 0 
i=l i=1 

The set I= {u 1, u 2 , . .• , Un } is called the support of '17· 

Obviously from assumption AI : 

E[17] = 0 for any 17 

(4) 

(5) 

It is well known that, under assumption AI, a unique "best linear unbiased" 
interpolate Zp (u 0 ) can be computed from any set Zf = {z(uJ),z(u 2 ), 

... ,z(uN)}: 

N N 

Zp (u 0 ) = L rp 1z(u1) with I C/J; = 1 (6) 
i=1 i= 1 

The coefficients rpi are the solution of the so-called "Kriging system" (Journel 
and Huijbregts, 1978). The subscript F is used to conceptually distinguish 
the true interpolate computed with the true (but unknown) variogram, from 
an approximate interpolate computed with a variogram model, that shall be 
introduced in Section 2.2. zF (u 0 ) can be viewed either as a random variable 
(if Zf is a set of random variables) or as a deterministic number (if Zf is a 
sample of a field realization). In the latter case we refer to Z1~ as the set of 
data or the set of observations. 

The interpolation error is denoted: 

ep(u0 ) = z(u 0 )-zp(uo) 

The following lemma summarizes some well-known properties of ep (u 0 ). 

Lemma 11: 

(a) ep (u0 ) is a GI on the supporti0 = {u 0 , u 1, ... , uN }. 

N N 

(b) E[e~(uo)] =- L L r/J;C/Ji'YF(hu) 
i=O j=O 

(7) 

(8) 
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with rPo = -1 and hij = ui - ui. 
(c) E [eF (u 0 ) f/(! 1 )] = 0 for any GI 

on the support 

!1 ={ui,U2, ... ,uN} = ! 0\{uo} (9) 

The quantity E [e~ (u 0 )] is called the "interpolation error variance" and is 
denoted a~ (u 0 ). 

2.2. The set of models M 

In most practical applications, fairly simple isotropic parametric models 
are used to describe the variograms. Commonly used models are (with h = 
llh 11): 

(a) the power-type model, 

"fM (h) = cxh~, 0 < {3 < 2 (lOa) 

(b) the logarithmic-type model, 
- -

'YM(h) = cxlog(l+{3h) 

(c) the exponential-type model, 

'YM (h) = cx[l- exp (-{)h)] 

(d) the Gaussian-type model, 

'YM(h) = cx[l-exp (-[3/?)] 

(e) the spherical model, 

( 
~cx(3h{3- 1 -h3 {3-3 ), 

"fM (h) = , ex, 

(lOb) 

(lOc) 

(lOd) 

(lOe) 

When a user chooses one of these expressions for his problem, he actually 
defines a set of models, parameterized by a and {3, within which the best 
model (i.e. the best estimates a and ~) is to be selected. We denote the set 
of models by M. 

In this paper we restrict ourselves to sets of isotropic models with the 
general form: 

"fM (h, cx,{3) = CtgM (h, {3) (11) 

but most of the discussion hereafter can be applied to more complicated 
parametric models. Note also that all the models (eqs. lOa-e) have the form 
of eq. 11. 

Now, using the Kriging system with the model 'YM instead of the true 
(unknown) variogram "'F, one can compute, from Zf(, an approximate inter­
polate zM and an approximate interpolation error variance a~I for any mem­
ber of a set of models. Obviously, different interpolates can be obtained for 
different values of (a, {3). 
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Some basic properties of the approximate interpolates (corresponding to 
a given set of models) are summarized in the following lemma. 

Lemma 12: 

(a) The approximate interpolates zM are independent of a and depend 
only on~: 

N X 

z:'vr(u 0 ,~) = I "-Jmz(u1), I A;({3) = 1 (12) 
i = 1 i=! 

(b) The approximate interpolation error variance Gh is of the form: 
N N 

a"~ (u 0 , a, {3) = -a I I "A,.({3) "-iW)gM (hii, {3), A0 = -1 (13) 
i=Oj=O 

(c) The interpolation error eM (u 0, {3) = z(u0)- zM (u0 , {3) is a GI on the 
supportJ0 ={u0 ,u 1, ... ,uN} 

It must be emphasized that a~1 is not the variance of eM but is an estimate 
of af,.. 

3. THE ESTIMATION OF~ BY THE MEAN SQUARED INTERPOLATION ERROR 
(MSIE) METHOD 

In this section we consider the problem of estimating~ from a finite set of 
pointwise data Zlf. = [z(u 1 ), ... ,z(uN )] by the MSIE method. The basic 
idea is that, if a variogram model is identified in order to design an optimal 
interpolator, then it makes sense to use the minimization of the inter­
polation errors as a criterion for the selection of the best model in the model 
set. 

3.1. Description of the method 

Having chosen a variogram model 'YM (h)= agM (h,{3), we can compute, at 
each data point u,., the interpolate zM (ui> {3) and the interpolation error 
eM (ui, {3) based on the other points ui (j = 1, ... , N; j =I= i). 

Our guiding principle for the variogram identification is then to select ~ in 
such a way that the interpolation errors eM (u,., {3) are as small as possible, in 
a mean squared sense. Therefore we consider the following criterion: 

N 

V({3) = N-1 I ek (u,., {3) (14) 
i=l 

Then the MSIE estimate of {3 is defined as the value of {3 that minimizes V ({3): 

~ = arg {m in V ({3) } 
[3 

(15) 
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3.2. A meaningful asymptotic property of the MSIE method 

In case of asymptotic convergence of the criterion V(~) for large data 
samples, one can give a very meaningful interpretation of the MSIE method. 
This interpretation is based on the following theorem: 

Theorem : Let: 

V(P) = E[V(~)] (16) 

and 

X 

= N-r I E[{zp(ui)-.ZM(uh~)} 2 ] (17) 
i=l 

Assume that, for large data samples, V ({3) tends asymptotically to V({3). 
Then the minimization Q.f V(p) with respect to~ is asymptotically equivalent 
to the minimization of W(~). 

Proof: By assumption, the minimization of V(P) is asymptotically equiva­
lent to the minimization of V(P}: 

N 

V(~)= N-1 LE[{z(ud-.ZM(ui>~)p] 
i=l 

by eq. 7: 

N 

V(P) = N-1 LE[{zp(ui)+ep(u;)-.ZM(u;,~)} 2 ] 
i=l 

V(~) N-1 J
1
{E[{zp(ud-.ZM(ui>P)} 2

] 

+ 2E[{zp(u;) -.ZM (u;,{3)}ep(u;)] + a~(u;)} 
By lemma Ll: 

E[{zp(u;)-zM(ui,~)}ep(u;)] = o 
since [zp(u;)-.ZM(u;,P)] isaGion {u 1 , .. • ,U;-r.Ui+l•···•uN} 

therefore N 

V(~) = W(~) + N-1 La~ (u;) 
i=l 

(18) 

(19) 

(20) 

Obviously a~ (u;) is independent of~. _ 
Then the minimization of V(~) is equivalent to the minimization of WW) 

(q.e.d). 

Conclusion: It follows from this theorem that, at least asymptotically, the 
MSIE method selects, in a set of models, the variogram which gives the inter­
polates zM (u;, P) that are, in a mean square sense, as close as possible to the 
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optimal interpolates zr (u;) that could be computed if the true variogram 
was known. This conclusion does not require that the true uariogram need to 
be described exactly within the set of models, nor does it require any specific 
assumption on the probability density of the field.· 

Comments 

(1) The assumption that V(/3) converges to V(/3) for large data samples is 
certainly a reasonable ergodicity assumption for most actual situations. 
However, the determination of conditions on the field F under which this 
assumption holds is not a trivial task. This paper is oriented toward appli­
cations and we shall not discuss this point further here. A detailed discussion 
of the convergence of the MSIE method can be found in Bastin (1983). 

(2) As we have pointed out, the property just stated does not require that 
the true variogram can be described by any of the models in the set of 
models. If such an assumption is imposed, it is evident that the estimate ~ 
converges to the true value of {3 provided that V ({3) has a unique minim urn. 
In the applications that we have trt:ated so far, we have always found 
functionals V(/3) with a unique minimum as we shall illustrate in the 
applications. 

(3) The MSIE method can be used for random fields with nonstationary 
polynomial trends just as it has been described. We shall discuss this point in 
application 1 . 

( 4) A drawback of the MSIE method is that it does not take into account 
the geometry of the data points. One would expect that the interpolation 
error at a point that is fairly distant from most other measuring points would 
be larger than at a point that lies in a region where the measurements are 
dense. Yet the criterion gives the same weight to all interpolation errors. One 
can eliminate this drawback by incorporating the geometry of the measuring 
points into the criterion using maximum likelihood arguments (Bastin and 
Gevers, 1985). 

4. ESTIMATION OF a USING THE STANDARDIZED MEAN SQUARE ERROR 
(SMSE) CRITERION 

In this section, we ,consider the problem of estimating a from the inter­
polation errors eM (ui,/3). 

It follows from lemma L2 that the approximate interpolation error 
variance Ofu (ui, a,~) can be written: 

2 ' 2 . ' 
OM (Ui> <X, {3) = <XSM (u, !, {3) (21) 

where the coefficients sk (ui, ~) can be calculated from gM (h, ~ ). 
From lemma L2 it is also clear that we can consider a_k (uh a,~) as an 

approximation of the variance of ek (ui> ~ ). Therefore a straightforward way 
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for estimating a i~ to choose a\1 estimate & that ensures the consistency 
between a;it(u;, &, {3) and elidU;, (3 ). A usual criterion to evaluate this con­
sistency (Delfiner, 1976; Gambolati and Volpi, 1979) is the "standardized 
mean square error" (SMSE): 

N N 

L:(a) = N- 1 I e1r(u;,~)fafu(u;,o:,~) = N- 1 I efu(U;,~)jasfu(U;,~) (22) 
i=1 i =1 

Then the estimate & can be defined by L:(&) = 1, i.e.: 

N 

& = N- 1 I e,~(u;,4)fsk(u;,P) (23) 
i =1 

It must be noticed that a maximum likelihood interpretation of this expres­
sion of & can also be derived (Bastin and Gevers, 1985 ). 

5. APPLICATION TO A PIEZOMETRIC FIELD 

5.1. Motivation of the variogram identification 

A typical application of the BLU interpolation in random fields is the 
optimal contour mapping of piezometric levels (i.e. water-table levels) in a 
groundwater reservoir. Such a contour mapping requires the estimation of 
the piezometric level at all nodes of a meshed network covering the domain 
(in order to establish a chart of the piezometry) from measurements taken 
in a few wells scattered within the reservoir. Such a piezometric chart has 
been used as an input of an identification procedure whose objective was 
the modelling of groundwater flow in an aquifer of the Dyle river basin in 
Belgium (Bastin, 1981; Bastin and Duque, 1981). 

5.2. Description of the data 

The piezometric level has been observed in 28 wells during October and 
November 1977: the data-point coordinates and the measured piezometric 
levels are indicated in Table I. An experimental variogram computed from 
these data is shown in Fig. 1: it is drawn using 16 distance intervals, each of 
276-m length. 

5.3. Identification of a variogram model by the MSIE method 

From the data of Table I, the parameters a and {3 of various variogram 
parametric models were estimated, under assumption AI, with the methods 
described in the previous sections. The results are shown in Table II and lead 
to the following comments: 
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Fig. 1. Experimental variogram. 
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TABLE II 

MSIE identification results for various parametric variogram models 

Variogram model a: ~ V(~) Q =VV(fl 

r(h) = cxh!3 30.82 1.44 9.45 3.07 
r(i)) = cx(l- exp (=- ~h2 

)] 155.9 0.99 28.52 5.04 
r@=cxlog(1+0h)- -+0 
'Y(h) =ex[ 1- exp (-~h)] -+0 

(a) As can be expected from the shape of the experimental variogram, 
only models with positive curvature (i.e. the power- and the Gaussian-type 
models) can be reasonably estimated. Indeed, the method converges to a 
meaningless estimate~ = 0 for the models with negative curvature. 

(b) The best model selected by the MSIE method is the following power­
type model: 

'Y(h) = 30.82Ji'l.44 (24) 

with a water-level mean square error Q = 3.07 m (while Q = 5.34 m with the 
best Gaussian-type model). 

(c) The criterion V({3) for the power-type model is shown in Fig. 2: it has 
a unique well-pronounced minimum value. 

In Table Ill, we give the estimates &Ls and $ LS obtained from a least­
squares (LS) fitting of the parametric models on the experimental variogram 
[the details on this least-squares estimation are described in Bastin and 
Gevers (1985)]. The mean square error Q =~)and the SMSE ~(&Ls) 
are also indicated. Fig. 3 illustrates graphically the identified models. 

We see that, for the power-type models, the mean square errors Q 
obtained with the MSIE method and the LS methods are quite close (3.07 
and 3.27, respec.). Nevertheless, these models are not equivalent since the 
values of & (and, therefore, also the interpolation error variance afu.) are very 
different (30.82 and 91.49, respec.). Furthermore, the SMSE l:(&Ls) are 
not admissible (0.26 and 0.56, respectively, instead of 1 as expected from a 
good variogram model, see Section 4). Therefore, we believe that the LS 
models must be rejected in spite of a very good fit to the experimental 
variogram. This is an enlightening illustration of the fact that the variogram 
model 

"cannot rely entirely upon the experimental variogram" 

(Gambolati and Volpi, 1979) and of the 

"obvious lack of robustness of the least squares variogram identification in case of 
scarce data" 

as it resorts from simulations of Bastin and Gevers (1985). 



~------

V(p) 

16 (m2) 

15 

14 

13 

12 

11 

10 

9 

8 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 
p 

Fig. 2. Criterion V(/3) for a power-type model. 

TABLE III 

Least-squares fitting of parametric models to the experimental variogram 

Variogram model 

'Y(fu = cxh~ 
"((h)= cx[l- exp (-/3h2 

)] 

500 I 

250 

0 2 3 4 

91.48 
729 

5 KM 

1.29 
0.08 

Q =VV(ffiLs) 

3.27 
13.82 

0.26 
0.56 

41 

Fig. 3. Estimated variogram models (1 =power-type model- MSIE; 2 = Gaussian-type 
model- MSIE; 3 =power-type model- LS; 4 = Gaussian-type model-- LS). 
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Fig. 4. Criterion Q = yV(6) for different trends. 

TABLE IV 

MSIE identification results, with a power-type model, for various polynomial trends 

Trend, structure 

Constant 
Linear 
Quadratic 

1.44 
1.38 
0.45 

5.4. Non-stationary polynomial trends 

Q 

3.07 
3.76 
5.11 

The MSIE identification method can also be used to identify variogram 
models of fields with a non-stationary mean (or "trend") and a stationary 
variogram. The most commonly used trend structures are polynomials; here 
we restrict ourselves to linear and quadratic polynomials of the form: 

(linear) E[z(u)] = a0 + a 1x + a2 y (25) 

(quadratic) E[z(u)] = a0 + a 1 x + a2 y + a3 x 2 + a4 y 2 + a5 xy (26) 

It is well known that BLU interpolation can be constrained by such trends 
even if the coefficients ai are unknown. Then constrained interpolation 
errors eM (ui, {3) and a constrained criterion V(/3) can also be computed and 
compared with the results of Section 5.3. In case of power-type models, the 
comparison illustrated in Fig. 4 and Table IV, shows that the MSIE Q 
increases with the polynomial trend orders. 

6. APPLICATION TO RAINFALL FIELDS 

6.1. Motivation of the uariogram identification 

The flash floods in the Cevennes Mountains (southeast of France) which 
are sometimes catastrophic (1933, 1958, 1976, 1980), have led the public 
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authorities of the Gard Province to implement a real-time flood forecasting 
system (Obled and Creutin, 1982). The main purpose of this system is the 
flood forecasting on small watersheds (300-1000 km 2 ) with short response 
times (a few hours). 

Both unit-hydrograph and ARMAX single-input-single-output flood 
forecasting models have been developed (Versiani, 1983). The input of these 
models is a linear estimate of the hourly mean areal rainfall denoted: 

N 

P*(k) = L "Aa,z;(k) (27) 
i= I 

where k is a discrete time index (time step = 1 hr.) and z;(k) is the hourly 
rainfall depth at the ith raingauge. 

Several well-known methods have been used for the determination of the 
weighting coefficients "A;k: e.g., Thiessen method, spline functions, Kriging 
(Lebel and Creutin, 1983 ). Irrespective of the method of computation of the 
A;k , the variance of P* ( k) can be written: 

N N N 

a~ (k) = 2A -J ;~1 "A;k J 'YF (u- V;, k) dv -- ;~1 i~l "A;k "Aik 'YF (vi - ui> k) 
A 

+ A-2 J J 'YF (v-u, k)dvdu (28) 
AA 

if, for a fixed k, the hourly rainfall depths z;(k)(i = l, ... ,N) are viewed as 
pointwise realizatio,ns of a random field with variogram (see eq. 3): 

'YF (h, k) = "fF (V-U, k) 

In expression (28), A denotes the watershed surface. 
It follows from this expression that the calculation of a~ (k) needs a pre­

liminary identification of a variogram model. Another motivation is that the 
knowledge of the variogram of rainfall fields allows for the computation of 
mean areal GRADEX's which are known to be efficient tools for the deter­
mination of extreme flood values (Lebel and Guillot, 1983; Lebel, 1984). 

6.2. Description of the data 

We have analyzed all the large rainfall events on the Cevennes during the 
last ten years. We have restricted ourselves to the fall season since-it is the 
season of the major flash floods. We present the variogram identification 
results that we have obtained on the Gardon d'Anduze river basin, using a 
network of 34 recording raingauges which are shown in Fig. 5 and Table V. 
The 103 strongest hourly rainfalls have been selected and distributed in two 
samples according to two types of spatial structure: sample A involves 49 
events with a strong cell centered over the basin while sample B involves 54 
events with a more complex structure. An illustration is given in Fig. 6 and 
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Fig. 5. Gardon d'Anduze watershed and raingauge network("'= station). 

Table VI summarizes some statistical characteristics of the data, namely the 
spatial sample mean and the spatial sample variance of each event, defined as 
follows: 

N 

P(k):::; N-I I Zj(k) (29) 
i = 1 

N 

S2 (k) = N- 1 I [zi(k)- P(k)F (30) 
i =I 

6.3. Basic assumption 

Following a climatological approach for the identification of rainfall fields 
variograms described by Bastin et al. (1984), we adopt a parametric structure 
of the form: 

(31) 

With this structure all the time nonstationarity (i.e. the dependence on the 
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TABLE V 

Coordinates (km) and names of the raingauges 

No. X y 

212 66.5 64.8 St. Andre de Valborg 
202 89.2 55.0 Anduze 
203 93.3 71.5 La Grand Combe 
204 88.9 76.8 Ste. Cecile 
205 88.0 65.5 St. Paul la Caste 
206 83.8 76.0 Collet de Deze 
207 85.1 61.8 Mialet 
208 75.7 56.9 Soudorgues 
209 74.3 73.4 St. Germain de Calbe 
210 70.5 71.1 Fabregues 
211 80.6 60.8 St. Jean Du Gard 
201 97.0 63.0 Ales 
213 71.8 65.5 St. Roman de Tousque 
214 74.4 60.3 St. Martin de Cor~on 
215 77.5 67.5 St Btienne 
216 62.5 76.0 Barre des Cevennes 
221 79.4 85.3 Soleyrol 
222 92.5 40.8 Barrage de Rouviere 
223 90.0 38.7 Quissac 
224 83.2 39.7 Barrage de Ceyrac 
225 79.0 45.0 St. Hippolyte du For 
226 61.5 58.0 Valleraugue 
227 59.0 48.0 Le Vigan 
228 76.0 85.2 St. Hippolyte du For 
249 69.0 89.5 Pont de Montvert 
251 56.1 62.6 Mont Aigoual 
263 80.2 26.6 Valflaunes 
268 75.5 52.0 Colognac 
275 47.9 61.6 Camprieu 
276 69.6 78.9 Cassgnas 
279 57.6 85.0 Florae 
280 55.9 74.2 Les Vanels 
287 84.0 70.8 Mas Villard 
271 51.0 71.8 Perjuret 

time index k) is concentrated in the scale factor cx(k) (which has to be esti­
mated separately for each event), while the factor gM (ii, {J) is time invariant 
and can be estimated once and for all from the complete set of tlata. 

It must be emphasized that, in case of a bounded variogram model, this 
approach is completely equivalent to L.S. Gandin's climatological approach 
(Gandin, 1965; see also Creutin and Obled, 1982). 

Consider that the first-order spatial increments of each event have been 
standardized as follows: 

[z;(k) -zi(k)]/S(k) (32) 
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Fig. 6. a. Strong hourly rainfall centered over the basin. 
b. More complex structure with a cell on the border of the basin. 

TABLE VI 

Spatial sample mean and sample standard deviation of the hourly rainfalls in each sample 

Sample A Sample B 

date mean S.D. date mean S.D. 
(year/month/ P(k) S(k) (year/month/ P(k) S(k) 
day/hour) day/hour) 

75/09/30/08 72.9 94.6 73/11/05/01 25.0 30.8 
75/09/30/10 67.1 88.6 73/11/05/03 13.6 23.3 
75/09/30/12 165.8 191.5 73/11/05/05 35.9 46.0 
75/09/30/13 163.9 162.2 73/11/05/07 52.3 73.9 
75/09/30/14 121.2 138.7 73/11/05/09 32.7 43.5 
76/08/29/01 85.3 85.3 73/11/05/11 47.3 53.7 
76/08/29/02 109.1 125.0 73/11/05/13 40.9 52.3 
76/08/29/03 93.6 85.5 74/09/16/20 168.2 244.9 
76/08/29/05 66.3 86.6 74/09/16/22 63.6 99.2 
76/08/29/06 68.6 100.3 74/09/16/24 103.6 130.5 
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TABLE VI (continued) 

Sample A Sample B 

date mean S.D. date mean S.D 
(year/month/ P(k) S(k) (year/month/ P(k) S(k) 
day/hour) day/hour) 

76/09/12/05 62.2 86.0 74(09/17/02 108.2 135.7 
76/09/12/06 227.3 282.8 74/09/17/03 159.5 207.1 
76/09/12/07 262.5 247.6 74/09/17/06 142.3 183.8 
76/09/12/08 181.0 178.0 76/08/28/14 77.3 104.8 
76/09/12/09 188.5 179.8 76/08/28/15 66.2 120.5 
76/09/12/10 137.7 183.0 76/09/12/20 43.1 48.3 
76/11/09/16 81.6 72.9 76/09/12/21 110.8 82.7 
76/11/09/18 55.7 48.4 76(09/12/22 63.8 58.9 
76/11/09/20 71.2 46.5 79/10/24/18 33.5 31.6 
76/11/09/22 79.2 50.1 79/10/24/20 33.5 23.9 
76/11/09/24 83.9 50.2 79/10/24/23 46.9 18.5 
76/11/10/02 90.0 60.5 79/10/25/01 57.3 20.5 
76/11/10/03 101.9 71.1 79/10/25/04 42.3 32.6 
76/11/10/06 81.6 62.4 79/10/25/06 62.7 32.0 
77/10/23/07 93.6 112.1 79/10/25/10 68.5 31.0 
77/10/23/11 108.2 106.6 79/10/25/12 56.9 16.5 
77/10/23/12 131.0 165.1 79/10/25/16 46.5 24.4 
77/10/23/13 139.0 146.3 79/10/25/20 40.8 20.7 
77/10/23/14 106.0 132.1 79/10/25/22 50.4 16.8 
77/10/23/16 73.9 64.5 79/10/25/24 55.0 29.6 
79/10/04/20 104.2 135.9 79/10/26/02 36.2 .31.6 
79/10/04/21 165.7 201.0 79/10/26/03 53.8 41.8 
79/10/04/22 62.9 79.6 79/10/26/05 72.7 35.8 
79/10/04/23 30.8 100.9 79/10/26/08 39.9 18.2 
79/10/04/24 39.0 ' 52.8 79/10/26/10 59.2 28.1 
79/10/07/01 47.2 30.2 79/10/26/12 48.5 33.5 
70/10/07/03 56.0 51.9 79/10/26/14 54.6 45.0 
79/10/07/05 57.9 45.6 79/10/26/16 50.0 27.7 
79/10/07/07 46.6 30.9 79/10/26/18 58.5 40.4 
79/10/07/10 47.7 31.2 79/10/26/19 53.1 23.5 
79/10/07/12 54.1 43.9 79/10/26/22 33.0 15.4 
79/10/07/15 69.6 63.4 80/09/20/18 23.7 34.9 
80/08/15/11 55.8 56.9 80/09/20/20 71.2 108.7 
80/08/15/12 126.4 125.9 80/09/20/23 9.6 13.3 
80/08/15/15 70.4 81.6 80/09/20/24 32.5 48.9 
80/10/16/14 55.7 57.3 80/09/21/02 38.3 38.5 
80/10/16/16 87.0 104.0 80/09/21/04 31.7 55.8 
80/10/16/18 64.3 65.5 80/09/21/05 35.0 85.4 
80/10/16/20 152.6 128.2 80/09/21/06 25.4 59.5 

80/09/21/08 40.4 78.5 
80/09/21/09 39.2 72.6 
80/09/21/11 37.9 90.9 
80/09/21/12 21.2 43.5 
80/09/21/14 17.5 31.9 

S.D. = standard deviation. 
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Fig. 7. Climatological experimental variograms. 
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Fig. 8. Distribution of the data-point couples with respect to the distance intervals. 
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Fig. 9. Climatological experimental variograms for three directions. 
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Then the basic assumption that underlies the choice of the variogram struc­
ture eq. 31 is that all the standardized observations in a given sample (A or B) 
are realizations of a unique random field with variogram model gM (h, {3) 
(which we call the climatological variogram). Such an assumption is certainly 
reasonable within the context of our application (see Section 6.1 ), since the 
data samples involve homogeneous data. Furthermore, it is absolutely 
needed .for real-time forecasting purpose (with 1-hr. time step): the alltomatic 
fitting of a variogram model for each event would be too much time 
consuming. 

6.4. The experimental climatological uariograms 

The experimental climatological variogram has been drawn for each data 
sample, with the standardization ( 32 ). They are presented in Fig. 7. 

A division into 15 distance intervals has been adop~ed. However, intervals 
1, 2 and 12-15 have been aggregated. The distribution of the data-point 
couples with respect to the distance intervals is shown in Fig. 8. 

As can be expected from the standardization (32), the sill of the experi­
mental variograms is nearly one. The search for preferred directions did not 
give significant results as can be seen in Fig. 9. 

6.5. Climatological uariogram identification by the MSIE method 

In view of the shape of the experimental variograms, 
power-type structure are tried: 

a spherical and a 

spherical model: 

- \!(3h{3-1 -fi3{3-3), 
gM (h,{3) = 

1, h ;:;;. {3 
(33) 

power-type model: 

gM (fi, {3) = h} (34) 

For each model :'lnd for each event we can compute the MSIE: 

N 

V, ({3) = N-1 I ek (ui> {3, k) (35) 
i=l 

Then, a global MSIE criterion over all the events is defined as: 
K 

V({3) = K- 1 L v, ({3) (36) 
"= 1 

with K the number of events in a sample (K = 49 and = 54 for samples A 
and B, respectively). 



TABLE VII 

Values of the criterion V(m 

Sample A 

Spherical: 

~=range (km) 1 10 15 20 25 30 

V(~)(mm2 ) 170.3 123.5 109.1 99.0 91.4 92.9 

Power type: 

0.1 0.3 0.5 0.6 0.7 0.8 
159.8 112.6 96.8 94.2 93.5 98.6 

Sample B 

Spherical: 

~ = range (km) 1 10 15 20 25 30 

V(~)(mm2 ) 118.8 102.5 92.8 7 5.4 71.2 7 4.6 

Power type: 

0.1 0.3 0.5 0.6 0.7 0.8 
130.0 105.1 92.1 81.8 80.4 89.5 

TABLE VIII 

Values of V({3) with 12 stations inside the watershed 

Spherical: 

~ = range (km) 1 10 15 20 25 30 
Vj_2 ({3) (mm2

) 180.1 130.1 114.2 98.2 90.3 92.8 

Power type: 

~ 0.1 0.3 
Vi2({3)(mm2

) 166.3 112.5 
0.5 0.6 0.7 0.8 

96.2 92.8 90.5 96.7 
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35 40 50 

99.1 105.5 126.2 

0.9 1.0 1.5 
105.0 114.4 146.5 

35 40 . 50 

81.2 88.5 97.3 

0.9 1.0 1.5 
101.3 101.6 138.9 

35 
98.6 

40 50 
105.1 120.0 

0.9 1.0 1.5 
104.1 111.0 140.2 

The minimization of V({3), in each sample and for each model, gives the 
results presented in Table VII. They lead to the following comments: 

(1) As can be expected from the shape of the experimental variogram, the 
spherical model (with a sill) is better than the power-type model. 

(2) With a spherical model, we obtain the same optimal value of~~ 25 km 
(i.e. the same "range") for both samples A and B. This !s an important 
cross-validation result since the samples are independent and involve rainfall 
events with very different spatial structure. 

(3) The MSIE V(m is larger for sample A than for sample B: the reason is 
that the rainfall events in sample A are heavier, as can be seen from Table VI. 
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Fig. 10. Criterion V(/3) for sample A, with the power-type (a) and the spherical model (b) 
(• =with 12 raingauges; A= with 34 raingauges). 

( 4) If we restrict the computation of each V k ({3) to the twelve stations 
located inside the watershed (but computing the interpolation errors eM 
from the 34 available stations), then we obtain the results of Table VIII, 
which are very similar to the results with 34 stations as is clearly shown in 
Fig. 10. 

6.6. Nugget effect 

The question of whether or not there is a nugget effect is difficult to solve 
from the examination of the experimental variogram when few data points 
are near one another.. In this case, indeed, the extrapolation of the 
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Fig. 11. Spherical model: (a) MSIE; and (b) manual fitting. 

TABLE IX 

Criterion V(~) with respect to the nugget effect 

Nugget 0 

~ = 25 91.4 
{3 = 30 92.9 

0.05 

91.0 
91.8 

0.10 

91.9 
92.1 

0.15 0.20 

92.7 95.0 
92.9 95.3 

0.30 0.40 

112.3 120.7 
112.4 120.9 

0.50 1.00 

128.2 171.5 
128.0 171.5 
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experimental variogram toward the origin is hazardous: this is certainly one 
of the main drawbacks of IJ?.anual or LS fitting of parametric models to 
experimental variograms. From this point of view, the MSIE method can be 
more reliable. 

We show, in Fig. 11, the spherical model that has been estimated above 
W = 25 km) and a spherical model that could be reasonably fitted manually 
to the experimental variogram. The main difference is the nugget effect 
which appears to be nonnegligible in the manually fitted model. 
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TABLE X 

Estimates &o 

Sample 

A 
B 

1.03 
1.12 

In order to study this issue, we have computed the M8IE's for different 
values of~ and of the nugget. The results are given in Table IX: they show 
that a non-zero nugget does not improve in any way the interpolation 
performance. 

6. 7. Estimation of a: 

In view of the results of the previous sections, we opt for a spherical 
variogram of the form (fi in km): 

- (a:(k)[l.5(h/25)-0.5(h/25)3
], 0 ~ h ~ 25 

"f(h,k) = (37) 

a:(k), h ;:;;, 25 

Clearly the time-varying parameter a:(k) is closely related to the sample 
variance 82 (k) since, ideally, one should have a:(k) = 82 (k) if the variogram 
model was the true-field variogram and if the sample variance was the true­
field variance. Therefore, we adopt the following expression: 

(38) 

The values of 82 (k) are known and given in Table VI. 
The unknown parameter a:0 can then be estimated using the following 

version of the 8MSE criterion: 

N N 

&0 = (NK)- 1 I L e1(u;,~,k)/S2 (k)s1(u;J,k) (39) 
k= 1 i = 1 

The results, given in Table X, show that &0 is close to one for both samples 
as can be expected. For events of sample A (with a rainfall cell centered over 
the basin), we see that the sample variance 8 2 (k) can be taken as the esti­
mate of a:(k ). For the more complex events of sample B, the sample variance 
82 (k) has to be slightly enlarged (&0 = 1.12), probably due to a lesser homo­
geneity of the sample. For reason of safety, we have suggested to the users 
the value &0 = 1.12 for all the future events. 

We could also estimate a:(k) by using the 8MSE criterion separately for each 
event: however, this would be too much computation time consuming for 
real-time operation since it requires, at each time step, the numerical 
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resolution of (N- 1) large linear systems in order to calculate the inter­
polation errors eM. 

The solution we have adopted is very simple: only the calculation of the 
sample variance 82 (k) is required, every hour. Then the variogram model of 
the hourly rainfall of interest is completely specified and ready for use by 
the flood forecasting routine. 

7. CONCLUSION 

We have given a systematic presentation of the MSIE variogram identifi­
cation method. The basic idea of this presentation is that of disconnecting 
the variogram model assumptions from the probabilistic structure of the 
"true" field. This is certainly a realistic point of view since in most appli­
cations very simple (often isotropic) models are adopted and we are never 
sure that the true field can be exactly described by one of these models. 
With this point of view, a general asymptotic result is demonstrated which 
leads to a very meaningful interpretation of the MSIE method. Furthermore 
consistency of the {3 estimate is an immediate consequence of this result. 

Then we have illustrated the MSIE method with two hydrologic 
applications: 

(1) In the piezometric field application, the variogram model is a basic 
tool for the contour mapping of the water level. From the results we con­
clude that: 

(a) the MSIE criterion is an efficient tool to discriminate between alter­
native variogram models; and 

(b) in case of scarce data (here 28 pointwise observations) the models 
obtained with the MSIE method can differ substantially from those derived 
from the experimental variogram: a theoretical analysis of the robustness of 
the various identification methods with small data sets would be very useful. 

(2) In the rainfall field application, the variogram model is needed to cal­
.culate mean areal rainfall variances and mean area! GRADEX. A global clima­
tological variogram is identified: in the present case a very large data set is 
available (3502 pointwise observations) and the best model turns out to be 
very close to the experimental variogram. Furthermore an interesting cross­
validation result is that the parameter estimates obtained from two sub­
samples of the complete data set are very close. 
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