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On State Accessibility  in  Reaction  Systems 
G. Bastin and J. Gv ine  

Abstract-Reaction  systems constitute a class of nonlinear 
dynamical systems relevant in many engineering  fields  such as 
chemical  engineering,  biotechnology, and ecology.  The state ac- 
cessibility rank of generic reaction systems can be characterized, 
irrespective of the  reaction kinetics, by simple algebraic  criteria 
closely related  to the underlying  structure of the  reaction net- 
work and the associated exchange  dynamics. 

’I” 
I .  INTRODUCTION 

E concept of reaction system refers to a wide  class 
of nonlinear dynamical  systems that have been used, 

for a long time, as useful tools for a better understanding 
of engineering problems in various fields such as  chemical 
engineering, biomedical engineering, biotechnology, ecol- 
ogy, etc. 

The stability of these systems (without control inputs) 
has been the object of in depth studies in the  literature 
from the early seventies (see e.g., the review article [4]). In 
contrast, their state accessibility,  which is a prerequisite to 
controllability and is the purpose of this paper, has re- 
ceived  much  less attention. 

The dynamics of reaction systems are commonly de- 
scribed by ordinary nonlinear differential equations (un- 
der  the form of a state-space model) arising from stan- 
dard mass-balance considerations. These models result 
from the combination of a reaction network (which en- 
codes the reactions that  are supposed to occur in the 
system)  with  two  basic  physical phenomena: reaction kinet- 
ics and exchange dynamics. 

As a matter of fact, the inherent structure of both 
reaction network and exchange  dynamics is essentially 
linear, while the system nonlinearity is concentrated in the 
reaction kinetics under the form of  highly coupled nonlin- 
ear rational functions. 

Our contribution will  be to show that much  can be said 
about the  state accessibility of reaction systems indepen- 
dently of the reaction kinetics, by using arguments from 
linear algebra and linear systems  only, in close connection 
with the underlying structure of the reaction network and 
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the exchange dynamics. In particular, we shall describe 
simple algebraic criteria for the determination of the 
strong accessibility rank of so-called generic reaction sys- 
tems without resorting to Lie bracket computations. 

Our motivation for examining the  state accessibility of 
reaction systems is threefold. 

1) There is a clear industrial interest to be able to 
characterize the compositions (that is the respective 
amounts of the various components involved  in the reac- 
tions) which  can be actually achieved in a given applica- 
tion. 

2) In many practical cases, one has very little cer- 
tainty about  the reaction kinetics that  are really occuring 
in a system,  while the exchange  dynamics are much well 
known. Yet, it is a peculiarity of reaction systems that 
particular patterns of the exchange dynamics (that are 
frequent in practice) may produce a lack of full state 
accessibility. It is therefore of interest to detect before- 
hand those systems  which cannot be full state reachable, 
irrespective of the knowledge of the kinetics. 

3) State accessibility is a necessary requirement for 
the transfer of persistent excitation needed to the conver- 
gence of parameter identification algorithms from 
input-output data, which  is  also a key issue in many 
practical applications concerning reaction systems  (.e.g., 
[14], Vajda et al. [3], Chen et al., 1990). 

The paper is organized as follows. A detailed presenta- 
tion of reaction systems is  given  in the next section, 
including a description of reaction networks, the main 
assumptions regarding the reaction kinetics and the ex- 
change dynamics and the derivation of a general state- 
space model. In Section 111, the maximal strong accessibil- 
ity rank of generic reaction systems is progressively nar- 
rowed. A fast procedure for  the computation of the maxi- 
mal strong accessibility rank is presented in Section IV. 
The stability of the uncontrollable modes is examined in 
Section V. Some additional properties are finally  dis- 
cussed in Section VI. 

11. DESCRIPTION OF REACTION SYSTEMS 

In this section, we  give a formal and self-contained 
description of reaction systems.  We introduce a particular 
terminology to discuss the  state accessibility of these 
systems. The vocabulary will appear to be  closely related 
to that commonly used in chemical and/or biological 
engineering, but its scope is actually much larger. 

A reaction system takes place inside a closed domain 
(for instance, a reactor in a chemical engineering applica- 
tion, or a fish-pond in an ecological application). It is 
characterized by a set of rn reactions inuoluing a set of n 
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components. Two different mechanisms are supposed to 
be involved. 

Reaction Kinetics which refer to  the transformation of 
the components inside the domain (for instance, transfor- 
mation of chemical species through chemical reactions, or 
growth of a trout population by consumption of nutrients 
in a pond, or both together. 

Exchange Dynamics which refer to the exchange 
(without alteration) of the components between the sys- 
tem and its surroundings. 

The dynamics of reaction systems are encoded into 
reaction networks which are now described. 

A. Reaction Networks 
We start the description with  two simple examples 

taken from chemical engineering. In each case, the com- 
ponents are designed X,, X,,..., X, ,  numbered in an arbi- 
trary order. 

Example 2.1: We consider the so-called Brusselator of 
Prigogine and Lefever [ l l ]  which  is described by the 
following reaction network with m = 3 reactions involving 
n = 6 components: 

x, - x, + x, 
x2 + x3 * x, + x6 
2 x ,  + x, + 3 x , .   ( 2 . 1 )  

Example 2.2: A plausible mechanism for  the reaction 
between nitric oxide and hydrogen is described by the 
following reaction network with m = 4 reactions and n = 
6 components (e.g., [5, ch. 41): 

2 x ,  - x ,  
x, + 2 x ,  

x,  + x, + x, + x, 
x, +- x, + 2 x , .   ( 2 . 2 )  

The six components are: X ,  = NO, X, = H,, X, = N,O,, 
X, = N,,  X, = H,O,, X, = H,O. + 

Basically, a reaction network is thus a set of m reac- 
tions of the following form: 

y i j x i  - CSijxi j = I ; . . ,  m 

y i j  2 0 Sij 2 0 V i ,  j. (2.3) 

The coefficients yij and €iij are positive real numbers 
(called stoichiometric coefficients in chemical engineering 
and yield coefficients in  biological engineering). They  ex- 
press the nominal quantity of component X ,  which is 
consumed or produced by the jth reaction. For example 
the third reaction of the network (2.1) means: two moles 
of X ,  combined with one mole of X ,  produces three 
moles of X,.  

In Examples 2.1 and 2.2, it appears that all the stoichio- 
metric coefficients are integer numbers, as usual in chemi- 

i i 

cal engineering. In general, however, the coefficients are 
allowed to be real numbers as illustrated by the following 
biotechnological example. 

Example 2.3: The following reaction network with m = 
3 reactions and n = 7 components is presented by  Axels- 
son [ l ]  on the basis of a paper by Sonnleitner and Eppel i  
[12], to describe yeast  growth on glucose: 

X, + 2.33X2 f 0.525X3 + 3SX4 + 2.5XS + 3.66X6 

X ,  + 0.054X3 - 0.36X4 + 1.89X5 + 0.14X6 + l .88X7 

1.61X2 + 0.19SX3 +X7 - 1.32X4 + 0.68X5 + 2.12X6. (2.4) 

The seven components are: Glucose X,, Oxygen X,, 
Ammonia X , ,  Yeast X, ,  Carbon Dioxide x,, Water x69 
Ethanol X , .  + 

In the sequel, we shall sometimes consider particular 
subsets of components. They will  be designed by a nota- 
tion of the form X” where the superscript “a” is an 
identifier of the subset. I ,  will denote  the associated 
index, that is the set of the indexes of the components 
involved  in X”. Two  typical examples are  the subsets of 
reactants and of products. 

A reactant is a component which appears on the  left- 
hand side of at least one reaction. The set of reactants is: 

X‘ = {x , Iy i j  > o for some j }  

with  index I ,  = { i ly i j  > 0 for some j}. 

Similarly, a product is a component which appears on the 
right-hand side of at least one reaction. The set of prod- 
ucts is: 

XP = ( X , ]  sij > o for some j )  

with index Zp = (il Sij > 0 for some j } .  

A component X ,  can  clearly be a reactant of one reaction 
and a product of the same or another reaction (that is: 
1, n Ip + 0). When a component Xi  appears on both 
sides of a reaction j ,  it is called autocatalyst if Sij > yij > 0 
and catalyst if S i j  = yij > 0. 

A terminalproduct is a component which  is a product of 
at least one reaction but a reaction of none of the 
reactions. The set of terminal products is defined as: 

X‘ = {Xil yij = 0 Vj} index I ,  = Zp \Zr. 

Similarly,  an initial reactant is a component which is a 
reactant of at least one reaction but a product of none of 
the reactions. The  set of initial reactants is denoted: 

X d  = {XilSl j  = 0 Vj)  index I,, = I ,  \Zp. 
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Example 2.4: In the reaction network (2.1) of the Brus- 
selator, we can identify the following subsets of compo- 
nents: 

Reactants: I ,  = (1,2,3,5} 
Products: Zp = {3,4,5,6} 
Terminal products: Z, = I ,  \ Zp = (4 ,6)  
Initial reactants: Id = Zp \ 1, = { 1,2} 
Autocatalyst: X, in the third reaction. + 

B. Dynamical State-Space Model 
The dynamical state-space model expresses the material 

balance of the various components inside the system. It is 
thus assumed that the presence of each component in the 
system can be quantized with appropriate units (e& 
molar concentration, units of mass, number of cells,  weight 
of biomass etc.).  We denote by x, ( t )  the (instantaneous) 
quantity of component X i  in the system. The state vector 
of the model is then  the vector of the nonnegative quanti- 
ties x i :  

state vector: x = ( x l ,  x 2  ;.., x,,) . 

It is called the composition of the system. The global 
dynamics of reaction systems result from the combination 
of two mechanisms: reaction kinetics and exchange dynam- 
ics. 

Reaction Kinetics: The reaction rates (units of 
material/unit of time) are the expression of the rate of 
reactants consumption and products formation in the 
system, according to the reaction network. A reaction rate 
r . ( x ,   t )  is associated to each reaction of the network 
(j = l;.., m).  It is basically a nonnegative time  varying 
function of the  state x .  In this paper, however, we limit 
ourselves to the case (fairly common in practice) where 
the reaction rates do not explicitly depend on time and are 
rational functions of the states only. The vector of reac- 
tion rates (called reaction kinetics) is denoted: 

T 

reaction kinetics: r ( x )  = ( r , ( x ) ,   r Z ( x ) ; . . ,  r , ( x ) )  . 

Each reaction rate r j ( x )  may be a highly  complex nonlin- 
ear function of the states xi but with a slight restriction 
due to the following  basic “physical” fact: a reaction can 
take place only if  all the reactants of that reaction are 
present in the reactor, or, in other words, a reaction rate 
is necessarily zero whenever the quantity of one of its 
reactants is zero. This is technically stated in the following 
assumption. 

T 

Assumption 2.1: 
1) r j (x)  2 0 V j  
2) r j (x)  = 0 if x i  = 0 for some i E Zrj 

where Zrj denotes the index of the reactants involved  in 
the  jth reaction. + 

A special case of particular interest is when the reac- 
tion rates obey the so-called mass-action principle: 

where kj  denotes  the rate constant of the jth reaction. 
The mass-action principle consists of expressing each  re- 
action rate  as being proportional to the product of the 
involved reactant quantities x,( t ) ,  each raised to a power 
aij  called the order of the jth reaction with respect to the 
ith component. 

Exchange Dynamics: A basic feature of so-called open 
reaction systems is that some of the reactants are continu- 
ously supplied to the system from the outside and that all 
the components may be continuously removed from the 
system. The set of supplied reactants is denoted X’ (index 
I,, dim(Z,) = 4). In particular, we assume that all the 
initial reactants belong to X’, that is Id G I,. In addition, 
we adopt  the notational convention that the supplied 
reactants are numbered from 1 to q: 

X’ = { X i ,  i = 1;..,q}. 

The feed rates of the supplied reactants are  denoted ui 

Moreover, all the components are supposed to be re- 
moved from the system at  a  rate proportional to their 
quantity x i .  The proportionality constants are called spe- 
cific removal rates and are  denoted d i  (2 0, i = l;.., n). 
When all the components are removed at the same posi- 
tive  specific rate (i.e., di  = d > 0 for all i ) ,  the outflow is 
said to be homogeneous. When  only some of the di’s are 
equal, it  is  said partially homogeneous. 

State-Space Model: On the grounds of our previous 
definitions, the balance of each component in the system 
is now readily seen to be written as follows: 

( i  = 1, ... 
9 4) .  

m 
ii = (a i j  - y i , ) r j ( x )  - d , x i  + ui l < i < q  

j = 1  0 q < i s n ’  

We introduce the following matrix notations: 

r = [ y i j ]  n X m matrix with entries yij 

A = [ a i j ]  n X m matrix  with entries Sij 

D = diag{di, i = l ;**,nI .  

The dynamics of the system are  then represented by the 
following  dynamical state-space model: 

x = ( A  - T ) r ( x )  -DX + Bu. 
We also define the characteristic matrix: 

C = A - r .  (2.6) 
The rank p of this matrix is often called the rank of the 
reaction network (e.g., [4]). With the definition (2.6), the 
state-space model is rewritten: 

= C r ( x )  -DX + Bu. (2.7) 



Throughout the paper, a dynamical  system described by 
this state-space model will be called a reaction system. 

Example 2.5: Consider the Brusselator reaction net- 
work (2.1). Assume that the reactants X, and X,, which 
are  the only reactants which are not produced in the 
system, are the supplied reactants. The state-space model 
is as follows: 

The rank of the reaction network in this case is p = 3 = 
m. + 

Comment  2.1: It may arise that the rate constants k j  
that premultiply the rate functions (2.5) are temperature 
dependent (according to the Arrhenius law for instance). 
For  the moment, we assume that  the  temperature is 
regulated at an appropriate value so that  the system 
operates in isothermal conditions and the  rate constants 
are really constant. The nonisothermal case will be ad- 
dressed in Section VI. 

Comment  2.2: It is common practice, in chemical engi- 
neering, to deal with reuersible reactions depicted by reac- 
tion schemes of the following  kind: 

x, + x, + x, 

Le., with two arrows in opposite directions. The consis- 
tency of our description of reaction systems requires to 
encode reversible reactions as two separate simple reac- 
tions, one  for each direction, as  follows: 

x, +x2 +x, 
x, + x, +x,. 

This means that each reversible reaction is actually 
counted twice  in the reaction network. This was for in- 
stance the case in Example 2.2 where the first  two reac- 
tions actually stand for a single reversible reaction. + 

Example 2.6: Consider the reaction network (2.2) with 
the two supplied reactants X, (nitric oxid) and X, (hydro- 

gen). The state-space model is as follows: 

1 - 2  
0 

- 1 
0 
0 

- 

\ o  

2 
0 

- 1  
0 
0 
0 

0 
-1 
-1 
1 
1 
0 

In this case, due to the presence of a reversible reaction 
in the scheme, the characteristic matrix has not full rank: 
the rank of the reaction network is p = 3 < m = 4. 

Comment 2.3: The notion of reaction system covers a 
very  wide spectrum of application fields.  Obviously, the 
first  field one has in mind  is chemical engineering since 
our description coincides with the usual presentation of 
open isothermal reactors. But the concept can be ex- 
tended in many other fields such as biotechnology (see, 
for instance, Example 2.3, and also [2]), ecology, pharma- 
cokinetics, etc. . . . For example, the famous Lotka- 
Volterra prey-predator model (e.g., [8]), is as  follows: 

with the reaction rates 

r l ( x )  = x, r 2 ( x )  = x 1 x 2 .  

This state-space model is  easily seen to correspond to the 
following reaction network (see also [9, ch. 51): 

x, -+ (1 + C,)X, 

x, +x2 + (1 + C,)X*. 
The component X, represents the preys and the compo- 
nent X, represents the predators. The reaction rate 
r l ( x )  = x ,  is the growth rate of the self-reproducing popu- 
lation of preys on an unlimited renewable resource while 
r 2 ( x )  = x , x 2  represents the growth rate of the  predator 
population by consumption of the preys. The specific 
removal rate d is the mortality rate of the predators. The 
feed rate u, represents a supply of preys into the system. 

Epidemics of diseases give  rise to another class of 
dynamical models that can be interpreted in terms of 
reaction networks. For example, in the classical model of 
Kermac and McKendrick [7] a contagious disease spreads 
among a population by contact between the individuals. 
The infected individuals are denoted X,. The uninfected 
but susceptible individuals are denoted X,. Progressively, 
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the infected individuals become immune X,. This situa- 
tion can  be described by the following reaction network: 

x, -k x, -) 2 x ,  

x, -)x3. 
The first reaction represents contagion while the second 
represents recovery. The associated state-space model will 
be derived by completing the description with appropriate 
exchange dynamics  (i.e., migration of the involved popula- 
tions). Obviously, the reaction network could also be 
augmented by introducing additional effects such as pro- 
creation and vaccination , , , + 

111. STRONG ACCESSIBILI~ OF REACTION SYSTEMS 

The concept of accessibility in reaction systems relies 
on the possibility,  in a given application, of steering the 
system from one composition to another  one. The follow- 
ing definition of accessibility is relevant for reaction sys- 
tems of the form (2.7), see e.g., [13]. 

Definition 3.1: A composition x(1) is  accessible from a 
composition x(') if there exist a finite time T and a 
feeding function u(t> such that if r(0) = x(') then x ( T )  = 

An important question concerning the notion of acces- 
sibility  is the dimension of the manifold which  is  strongly 
accessible at time T from a given composition x. This 
dimension is called the strong accessibility rank at x. For 
the readers who are not familiar with the concept of state 
accessibility, some basic definitions are recalled in the 
Appendix. 

The strong accessibility rank p of a reaction system 
(2.7) is the dimension of the following Lie algebra: 

X('). + 

p = dim Lie{Cr(x) - Dxlcol B )  

where col B denote  the columns of B.  The aim of this 
section is to characterize this rank with simple algebraic 
criteria directly computable from the reaction network 
without writing the dynamics  analytically and without the 
knowledge of the kinetics.  We  have the following prelimi- 
nary fundamental result. 

Theorem 3.1: The strong accessibility rank p of a reac- 
tion system (2.7) satisfies the following inequality: 

q 5 p I rank 3 

where 8 is the following accessibility matrix: 

% = ( B , c ,   D C ,  D ~ C , . . . ,  D"- 'c ) .  
Proofi The proof proceeds in  successive steps. 
1) The left inequality is obvious, due  to the specific 

structure of B, that is the specific way  how the inputs ui 
enter  the system. 

2) We  have thus to prove that: 

dim Lie{f(x)lcol B )  5 dimsp(co1 3)  (3.1) 

where f(x) = C r h )  - DX. We shall first prove that in- 
equality (3.1) holds in the single input case: q = 1, B = b. 
Clearly,  it is sufficient to prove that, if a vector field h 

belongs to sp{col %), then: 

[f, hl E sp(col3} (3.2) 

since the distribution (col 8) is involutive (As usual [.,.I 
denotes the Lie brackets operation). The columns of % 
are denoted: 

8 = ~ ~ ( o ) ,  ,(I), c(z) ,..., C ( m )  ,..., C ( n m ) } .  

Since h belongs to sp{col %), there exists a set of scalar 
smooth real valued functions ui(x),  i = 0, l,..., nm, such 
that: 

h ( x )  = C d i ) u i ( x ) .  
i 

3) Proof of (3.2): 

(I) 

We  clearly  have: 

(1) E spkol 31, 
(11) E sp{col C c sp{col %}, and 
(111) E sp{Db, DC, D2C;** ,  0°C) sp(c01 %) 

because Db is colinear to b, and from Cayley-Hamilton 
theorem. 

4) The recurrence is initiated as  follows: 

h ( x )  = [f, b] = -C-b + Db E sp(b, col C), 
d t  

d X  

5 )  The argumentation of steps 2), 3), 4) is readily 
extended to  the multiinput case. + 

It is worth noting that the computation of rank(%) 
relies only on the knowledge of the characteristic matrix 
C and the exchange matrix D ,  but does not require  the 
knowledge of the kinetics vector function r(x). Further- 
more it follows from the proof of Theorem 3.1 that the 
sequence of distributions Q, (see the Appendix) satisfy, in 
the present case, the following set of inclusions: 

Q, G span(col(B,C, DC, D 2 C ; . . ,  D j - l C ) ) .  

In the generic case where all the distributions Q, are 
nonsingular, we have  in addition (according to Lemma 
A.2, Appendix): 

Q, & span{col(B, C, DC,  D'C;. . ,  D"-'C)}  V j .  

This leads to the following corollaIy of Theorem 3.1. 

a generic reaction system  is: 
Corollaly 3.1: The marimal strong accessibility rank of 

pm = rank %,,, 
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where 8, denotes  the following  maximal  accessibility 
matrix: 

3, = ( B , C ,  DC,   D2C,* . . ,  D"-'C).  + (3.3) 
Note the difference between 8 and 8,  the latter being 
obtained by dropping the last bloc D"-'C from the first 
one. 

One of the main interests of Corollary 3.1  is to give a 
simple criterion to detect beforehand, from the  structure 
of the reaction network, those generic reaction systems 
which are not fully  accessible, that is  which  possess un- 
controllable modes, or otherwise stated for which the 
strong accessibility rank p is certainly strictly lesser than 
the number of components n. As a matter of fact, the 
maximal  accessibility rank pm is  closely related to the 
structure of the exchange dynamics and more precisely to 
the outflow homogeneity. We  have the following result. 

Theorem 3.2: The maximal strong accessibility rank of a 
generic reaction system  satisfies the following inequality: 

rank(B,C) I p, I n .  
The upper bound is achieved for heterogeneous flow 
systems  having their specific  removal rates all different 
(i.e., d, # dj for all i ,  j ) .  The lower bound is reached for 
homogeneous flow systems where all the components are 
removed at the same specific rate (i.e., di  = d for all i). 
Furthermore, for such systems, if q + p < n (that is num- 
ber of supplied reactants + rank of the reaction network 
lesser than number of components), then the system can- 
not be fully accessible. 

Roo$ The upper bound is straightforward from the 
structure of the maximal  accessibility matrix (3.3). The 
lower bound is an immediate consequence of Corollary 
3.1 if one observes that D = dI, for homogeneous flow 
systems. The last statement results from rank(B,C) I 
rank B + rank C. + 

We now illustrate Corollary 3.1 and Theorem 3.2 with a 
simple example. 

Example 3.1: We consider the case of a simple reaction 
system described by the following  single autocatalytic re- 
action with three components: 

x, +x, - 2x, + x,. 
We  assume that X ,  is the single supplied reactant and 
that the kinetics obey the law  of  mass action. The system 
dynamics are written as follows: 

'4 
,&, I 
4' = [ - 1;;;' + [+. 

We calculate the distributions Qj for this system: 

We  first observe that this reaction system  will  be non- 
generic only  when x 2  = 0 which defines clearly a thin set 
in the  state space. We thus assume that x ,  # 0 and we 
calculate 3 , : 

i 1 -1 - d l '  
R m =  0 1 d ,  . 

0 1 d, 

We observe that 
1) the maximal strong accessibility rank is pm = 

rank 91rn = n = 3 when d, # d, and is p,,, = rank %,,, = 
rank[B, C] = 2 when d, = d,, in agreement with Theo- 
rem 3.2 and 

2) in each case, the actual strong accessibility rank is 
the maximal one: p = p,. + 

From this example, it appears clearly that, for generic 
reaction systems, the maximal strong accessibility rank 
can be achieved  in general ( p = p,) since additional rank 
decrease can arise only for singular choices of the kinetics 
vector function r (x) .  This point will be  further discussed 
in Section VI-A. 

Iv. A FAST PROCEDURE TO COMPUTE p,,, 

From Theorem 3.2, it appears that the maximal strong 
accessibility rank of a generic system  lies somewhere 
between rank[B, C] and n, provided the outflow is par- 
tially homogeneous. The whole information needed for 
the determination of p, is contained in the structure of 
the characteristic matrix C and more precisely in a set of 
partial homogeneity conditions (that is some of the di's are 
equal) that produce a decrease of the rank of the maximal 
accessibility  matrix. The following procedure allows an 
exhaustive  listing of these conditions. 

Procedure: 
Step I): Consider the ( n  - q )  X m matrix C* ob- 

tained by removing the first q rows  of C. The index of the 
rows of C* is denoted: 

I* = [ ( q  + l ) , ( q  + 2);..,n]. 

Step 2): Find all  index sets I j  I* such that  there 
exist a zero linear copbination of  rows  of C*, with 
nonzero coefficients of the following form: 

Aija(') = 0 with hi, # 0 Vi  E Ij 
i E I, 

where a(')(i E I * )  denote  the rows  of C* and I j  denotes 
the index of the nonzero coefficients hij. 

Step 3): For each I j ,  define a partial homogeneity 
condition as follows: 

di = d V i  E I j .  + 
Definition 4.1: Two partial homogeneity conditions are 

independent if their index sets ill and I j ,  do not  fully 
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overlap, that is: 
Ij l  C Ij2 and Ij2 C Iil. 4 

The following theorem, stating the rule for computing the 
maximal  accessibility rank of generic reaction system is  an 
immediate consequence of the above procedure. 

Theorem 4.1: The maximal  accessibility rank p, of a 
generic reaction system  is pm = n - h, where h is the 
minimal number of independent partial homogeneity con- 
ditions that are satisfied by the system. 4 

Example 4.1: Consider the following reaction network: 

x, + x 2  -I 2 x 2  + x 3  + x 4  
x, +x, -I 2 x 5  (4.1) 

where X ,  is the (single) supplied reactant. For this sys- 
tem, the maximal  accessibility matrix 8, is as follows: 

' 1  - 1 -1   -d l   -d l   -d :  -df  -d:  -d: 
0 1  0 d ,  0 d i  0 d i  0 

0 1  0 d4 0 d i  0 d: 0 
0 0 2 0 2d,  0 2d: 0 2d: 

%, = 0 1 - 1  d3 -d3  d:  -d:  d:  -di 

According to Theorem 3.2, 3 I pm I 5 in this example. 
We  apply the procedure to compute p,. 

Step I): The matrix C* is as follows: 

.. I1  0 ' 
c* = 1 -1 

1 0  with the associated index: I* 

\ o  2 / 

= [2 ,3 ,4 ,5] .  
Step 2): For this matrix, the following three index 

subsets are easily identified: 

I ,  = [2,4] with A,, = 1 and A,, = - 1 

I, = [2 ,3  51 with A,, = - 2,  A,, = 2 ,  A,, = 1 

I ,  = [3 ,4 ,5]  with A,, = 2,  = - 2, A,, = 1. 

Clearly, p, = rank(%,) = 5 when  all the specific  removal 
rates are different that is di  # dj  for all ( i ,  j ) .  But, accord- 
ing to Theorem 4.1, the accessibility rank decreases in the 
following  cases: 

p, = rank(%,) = 4 

pm = rank(%,) = 3 

if ( d ,  = d 4 )  or ( d ,  = d, = d , )  or 
( d ,  = d ,  = d , )  which are the three 
independent partial homogeneity 
conditions in this example. 
if ( d ,  = d ,  = d ,  = d , )  which  im- 
plies that two independent partial 
homogeneity conditions are satis- 
fied together. 4 

V. STABILITY OF THE UNCONTROLLABLE MODES 
In this section, we examine the stability of the uncon- 

trollable modes of generic reaction systems that have 
maximal strong accessibility rank (i-e., p = p,) but are not 
fully  strongly  accessible  (i.e., p < n).  

Theorem 5.1: There exists a linear change of coordi- 
nates such that, in the new coordinates, the uncontrol- 
lable modes of a generic reaction system of maximal 
strong accessibility rank are governed by linear and stable 
dynamics. 

Proo& It follows from Theorem 4.1 that the number 
of uncontrollable modes is the minimal number of inde- 
pendent partial homogeneity conditions which are satis- 
fied by the system.  We suppose that a set of such condi- 
tions has been selected and numbered from 1 to h. For 
each of these conditions, we introduce a new coordinate: 

zj  = Ai jx i  j = l , . . . ,  h (5.1) 
i E I, 

where Ai, denote  the coefficients defined at  the second 
step of the procedure to compute pm described in Section 
IV. A direct calculation then shows that these new coordi- 
nates represent the uncontrollable modes of the system 
and are governed by the following stable linear dynamics: 

i, = - d , z ,  j = l ; - . , h  
1 1  

where d, denotes the common value of the specific re- 
moval rate in the concerned index I,. 4 

Example 5.1: The state-space model associated to the 
reaction network (4.1) is as follows: 

If d ,  = d, ,  then rank(8,) = 4 as we have  shown  in 
Example 4.1. There is one uncontrollable mode defined 
as: 

21 = A 2 1 ~ 2  - A 4 1 X 4  = X ,  - i, = -d2Z1. 

If d ,  = d ,  = d ,  = d, ,  the rank(!Rm) = 3 and there  are 
two uncontrollable modes which  may be chosen as: 

z ,  = x ,  - x4 i ,  = -d,Z, 

VI. ADDITIONAL PROPERTIES 
In this last section, we present some additional proper- 

ties regarding the accessibility of reaction systems. The 
discussion is partially inspired by the comments of the 
reviewers on a first version of the paper. 

A. Independent Kinetics and Equivalent Systems 
Without loss of generality, it is  always admissible to 

assume that  the kinetics are independent in the sense of 
the following definition. 

Definition 6.1: The kinetics r , (x) ,   r , (x); . . ,  r , (x)  are in- 
dependent at the composition x if and only  if there exists 
a neighborhood of x such that the vector space 
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span(r,(x),  rZ(x);*., r,(x)} has dimension m on that 
neighborhood. 4 

It is  easy to see that a reaction system defined with 
dependent kinetics can  always be transformed into an 
equivalent reaction system  with independent kinetics. By 
equivalent, we mean that the two  systems  have  exactly the 
same state space representation. Before to give a formal 
statement of this property, we illustrate the point with two 
simple  examples. 

Example 6.1: Consider the following reaction network 

x,  + x2 

x, + x 3 .  
We assume that X ,  is the single supplied reactant and 
that the kinetics obey the law  of  mass action: 

r , (x)  = k , x ,  r 2 ( x )  = k , x ,  

These kinetics are proportional to one  another and there- 
fore not independent in the sense of Definition 6.1. The 
state-space model is written as follows: 

with a characteristic matrix 

rank(C) = 2. 

Now  by introducing another reaction rate r o ( x )  = x, it  is 
easily  shown that the model (6.1) is equivalent to 

k2 I 

This model itself  can be associated with the following 
reaction network: 

( k ,  + k2)Xl + k , X ,  + k2X3 

with a characteristic matrix 

Hence, it appears that these two different reaction net- 
works  with two different kinetics have the same state 
space representation because the following equality holds: 

Cr(x )  = C"r"(x>.  

We observe also that the number of reactions and the 
rank of the reaction network are reduced by the transfor- 
mation (from 2 to 1). However, this rank reduction is not 
systematic as shown  by the next example. 4 

Example  6.2: The reaction is defined as: 
x, + x, -3 x, t x, 

x2 + x3 
x, + x,. 

Again, we assume that the kinetics obey the law  of  mass 
action and are therefore not independent: 

r ( x )  = [ ;: 1 C =  [ ; rank(C) = 2 .  

The system  is equivalent to a reaction system  with inde- 
pendent kinetics defined as: 

XlXZ -1 0 1 

In this example, the number of reactions is reduced from 
3 to 2, but the rank of the reaction network is not reduced 
and remains equal to 2. 4 

Property 6.1: Consider a reaction system  with character- 
istic matrix C and kinetics r ( x )  that satisfy Assumption 
2.1 and are not independent. Then, there exists an equiva- 
lent reaction system  with characteristic matrix C" and 
kinetics ro(x> such that: 

1) Cr(x)  = Cor%) 
2) rank C" 5 rank C 
3) the kinetics r'(x) are independent and satisfy 

Assumption 2.1. 

The proof of this property is  easy. The way is indicated by 
the above examples. 4 

The implication of this property is that the matrix C 
can be replaced by the matrix C" in  all the previous 
results. This remark is however of marginal interest be- 
cause the situations where something is to be gained with 
this substitution and where the reduction does not appear 
trivially (as in the above  examples) are very seldom (in 
fact, we were not able to find a realistic one!). 

B. Continuous Stirred Tank Reactors 
The continuous stirred tank reactors (CSTR) constitute 

a very important special class of reaction systems. They 
are characterized by homogeneous outflow patterns. This 
means that all the components are withdrawn at  the same 
positive  specific rate: di = d > 0 for all i ,  with d called 
dilution  rate. For such  systems, the foregoing theory pro- 
vides  very simple algebraic tests to detect those continu- 
ous stirred tank reactors that  are certainly not control- 
lable by manipulating the reactant feeding rates, whatever 
the form of the kinetics. (Controllability means that any 
final composition is accessible from any initial one, in a 
finite time). 

Property  6.2: Two  simple necessary conditions for a 
continuous stirred tank reactor to be controllable are: 

rank(B,C) = n and q + rank(C) 2 n .  

This property is a trivial consequence of Theorem 3.2. 4 
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Nonisothemzal Reactors: So far, as mentioned in Com- 
ment 2.1, we have assumed that the kinetics r (x )  depend 
only on the  state x but are not affected by other factors 
such as the temperature  for instance. For many continu- 
ous stirred tank chemical reactors, it is however clear that 
a perfect isothermal operation is the exception rather 
than the rule. The foregoing accessibility theory can fortu- 
nately be extended to nonisothermal reactors in a very 
straightfomard way. Let us assume that  the kinetics are 
function of the composition x and of the  temperature T :  
r ( x ,  T ) .  The dynamics of the system are then obtained by 
augmenting the previous model (2.7) with an additional 
energy balance equation (with appropriate normaliza- 
tions) as follows: 

m 
F = hjr j (x ,  T )  - dT + u0 

j =  1 

1 = Cr(x, T )  - DX + Bu 

where the constant coefficients h, represent the heat of 
reactions ( h j  > 0 for exothermic reactions, hj < 0 for 
endothermic ones) while uo represents the heating/cool- 
ing action. It appears that this extended model has exactly 
the same form (2.7) as before, provided the notations are 
augmented as: 

It follows that all the accessibility results we have pre- 
sented in this paper are directly extendable to the non- 
isothermal case. 

C. Reaction Invariants  and  Uncontrollable  Modes 
It is interesting to notice that the dynamics (5.1) of the 

uncontrollable modes also define invariant sets in the 
space of the original coordinates: 

~ ~ ( 0 )  = Aijx,(0) = 0 * Zj( t )  = hi jx i ( t )  = 0 

V t  and Q j  = l;.., h. 

These invariant sets associated to the uncontrollable 
modes form a subset of the set of the so-called reaction 
invariants that are classically considered for closed reac- 
tion systems  in the Chemical Engineering literature (see 
e.g., [151,  [161). The number of invariants in a closed 
reaction system  is n - rank(C), whatever the form of the 
kinetics. The analysis of this paper can be interpreted as a 
way  of determining the maximal number of invariants that 
can be dropped out in a given reaction system  by manipu- 
lating the reactant feeding rates. In fact, we have  shown 
that in a generic system  with  maximal  accessibility rank, 
the number of remaining invariants (which  is the number 
of uncontrollable modes) is n-rank(am) I n - 
rank@, C). Obviously,  when the system  is full state acces- 
sible, all the invariants disappear. 

i E X ,  i 'Ii 

VII. CONCLUSIONS 
Simple algebraic criteria have been presented in this 

paper for  the direct computation of the strong accessibil- 
ity rank of reaction systems, from the knowledge of the 
reaction network structure only. Furthermore, it has been 
shown that, in case where the system is generically not full 
state accessible, the uncontrollable modes are necessarily 
governed by stable linear dynamics, in appropriate coordi- 
nates. 
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APPENDIX 

A BRIEF REVIEW 
STATE ACCESSIBILITY OF NONLINEAR SYSTEMS, 

We consider the class of nonlinear systems of the form: 

P 
x =f(x) + u1g,(x> (All  

i =  1 

with inputs u i  E R ( i  = 1,p>, state x E R" and where 
f(->, gi(.) are n-dimensional smooth functions on R". 

We assume that, in a neighborhood U of a point x" in 
R", there exists a change of coordinates 

such that in the new coordinates, the system  dynamics are 
written as: 

i ,  =fl(w1,W2,u1,...,Up) 

The coordinates w 2  are called uncontrollable modes at x' 
because their behavior is clearly not affected by the 
control inputs ui. By extension, the subsystem w2 = f 2 ( w 2 )  
may be called the uncontrollable subsystem at xo. 

It is  obviously natural to consider the largest uncontrol- 
lable subsystem  whose dimension is denoted y.  The di- 
mension p = n - y of the complementary subsystem is 
then called the strong  accessibility rank from xo: it  is 
clearly the dimension of the largest subsystem  whose 
behavior is affected by the control inputs ui. It is also the 
dimension of the manifold accessible from x' by manipu- 
lating the control inputs ui. 

Lemma A.I: (e.g., [lo, ch. 31). The strong accessibility 
rank of a nonlinear system of the form (Al) is the dimen- 
sion of the Lie algebra that contains the set of vector 
fields G = span{gi (i = 1, p ) ) ,  the set of vector fields: 
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and all the  repeated Lie brackets of vector fields from the 
sets F and G. This  Lie algebra is denoted: 

+ 
In practice, the following algorithm can be used to 

compute the strong accessibility rank (e.g., [6,  ch. 11). The 
following sequence of distributions is introduced: 

Q, = span{g,, ( i  = l , p ) }  

Q, = Q j - 1  + [ f , Q j - , I  + C [g,,Qj-11. 
i = l , p  

Lemma A.2: The strong accessibility rank is the dimen- 
sion of the smallest distribution Qjt such that Qp = Qj*+ 
In the particular generic case where all the distributions of 
the sequence are nonsingular, the number of steps j *  is 
ne( :essarily finite and lesser than n : j *  < n. + 
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