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the Accuracy of Areal Rainfall Estimation: 
A Case Study 

T. LEBEL, 1 •3 G. BASTIN,2 c. ÛBLED, 1 AND J. D. CREUTIN 1 

The issue of the accuracy of areal rainfall estimation is discussed through a case study on a catchment 
area in the Cévennes region of France. The basic tool for the analysis is a .. scaled estimation error 
variance" which is computed from a scaled climatoîogical variogram model of the rainfall field. We show 
how this variance provides a theoretical criterion to compare the accuracy that can be expected with 
three linear estimators (Thiessen, spline, and kriging) for various networks' densities. To support the 
methodology an experimental validation of the scaled estimation error variance computation is pero · 
formed, using "reference"' areal rainfall values cornputed with a yery high density network. 

1. INTRODUCTION 

Good estimates of mean areal rainfall are needed as inputs 
to hydrologie models. When based on ground measurements, 
their accuracy depends on the spatial variability of the rainfall 
nrocess and on the rain gage network density. Accuracy is of 

.-ticular importance when areal rainfall estimates must be 
computed in real time as inputs to runoff forecasting modeis. 
The high cost of equipping and maintaining the required teie
metering facilities, especialJy in mountainous regions, often re
sults in lov.r~density observation networks. 

Making the most of a given network (whether telemetered 
or not) is a prime concern shared by ali operators and hydro
logie designers. Consequently, the interpolation of data col
lected from scatt~red rain gaa;s has long been an important 
research topic in hydrology.'lcreutin and Obled (1982] have 
compared the performances of commonly used linear esti
mators. Their study shows that for low to medium density 
networks sophisticated methods (e.g., spline surface fitting or 
kriging) give better results than simpler conventional methods 
(e.g., Thiessen polygons or arithmetic means). Furthermore, 
various advantages and disadvantages are outlined for each 
method, providing a basis for evaluating their applicability to 
specifie hydrologie problems. More recently, a similar com
parison was applied to annual rainfalls by T abios and Salas 
f1985], yielding results consistent with those of Creutin and 

Jled. 
However, it is often more useful (but also more difficult) for 

a hydrologist to evaluate the error involved in areal rather 
than in point rainfall estimation. The theoretical error vari
ance of any linear areal rainfall estimator can obviously be 
comr:vted under the assumption that the observations are a 
r.ealiz.ation of a random field with a given covariance model. 
However, a major difficulty arises in validating the calculated 
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theoretical variance from experimental data, sinœ no direct 
measurement of the areal rainfall is available. 

The main objective of this paper is precisely to perfonn 
such an experimental validation through a case study cm a 
catchment area equipped with a very dense rain gage network. 
The validated error variance is subsequently used as a tool to 
assess the performance of three different linear estimators 
(Thiessen polygons, spliue surface fitting, and kriging) with 
varying network densities. These linear estimators are briefly 
described in. section 2. Section 3 shows how the .. climatologi
cal variogram" concept leads to the computation of a scaled 
variance of the estimation error for any linear estimator. Sec0 

tions 4-6 deal with a case study on the Gardon d'Anduze 
watershed in the Cevennes· region (France). Section 4 includes 
a description of the data and gives a briel accoun! of an 
extended identification study previously carried out to deter~ 
mine the structure of the climatological v~ogram in this 
region. In section 5 we propose that the areal rainfall corn$ 
puted from a very dense network using the Thiesseu method 
[Thiessen, 1911] can be consic!ered as a reference value to 
which estimation from less dense networks can be compared. 
Finally, the main contribution of this paper (section 6} is the 
description of a procedure for the experimental validation of 
the normalized error variance calculation. This normalized 
variance can then be used as a tool to assess the accuracy of 
the different estimators and the influence of the network den
sity. 

2. LINEAR ESTIMA TORS OF ARE.<\L RAINF ALL 

The areal rainfall over an area S is commonly defined as 

Z/ = ~ lz~c(x, y) dx dy (1) 
s s 

where Zzl~, y) denotes the point rainfall depth at the point (x, 
y), for the kth time interval of duration 8, and s = ISI. This 
quantity zk s is obviously unknown, since the rainfall depth is 
accessible only at a finite number (say, n) of scattered point
wise observations. It is therefore common practiœ in hydrolo
gy to estimate zk .1 using linear estimators of the form 

Il 

t"s = L l,z"ï (2) 
, ... 1 

i.e., as a weighted mean of the random variables 2 11 
1

, Z" 2 , • • • , 

z" Il observed at the rain gages. The three linear estimators we 
compare (Thiessen polygons, spline surfaœ fitting, and clima
tological kriging) differ from one another in the values of the 
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(3) 

In this section the three estimators are briefly described with· 
out reference to their accuracy. This issue will be addressed in 
section 3. 

2.1 Thiessen Polygons 

In this method [Thiessen, 1911] the watershed Sis divided 
into n zones of influence S;, one for each rain gage., The zone 
of influence of a rain gage is defined by those points which are 
doser to that gage than to any other station. The weighting 
coefficients i.; are then computed as 

i = 1, · · ·, n 

where si = !S; 1. This method is very familiar to hydrologists 
and can provide good estimations with dense networks. It 
does not, however, allow contour mapping. 

2.2. Spline Surface Fitting 

The spline surface fitting method wa.s primarily developed 
for contour mapping purposes. It is basically a method for 
interpolation between scattered pointwise observations which 
avoids the drawback of uncontrolled oscillations arising when 
polynomial interpolation is used. For this purpose, it obeys an 
optimal smoothness criterion (see, for example, Ahlberg et al., 
[1967]). In a two-dimensional spaœ, this criterion is the minio. 
mization of the bending energy of a thin ela.stic sheet support~ 
ed by the pointwise observations [Duchon, 1976]. 

If we denote the spline surface fitted to the observations of 
the kth rainfall event by Zk(x, y) then it is natural to approxi
mate the integral (1), i.e., the areal rainfall, by 

....... ll-zk~ =- Zk(x, y) dx dy 
s s 

(4) 

It is shown in the appendix that Z1/ given by (4) can be 
written as a linear estimator (2) if appropriate values of the 
weighting .coefficients i.; are computed by solving a 
(n + 3) x (n + 3) algebraic linear system. 

2.3. Climatological Kriging 

Kriging is a method of computing the weighting coefficients 
i.i in such a way that zk sis a minimum variance estimator of 
the random variable Zk, under the assumption that the ob
served rainfall events are realizations of a two-dimensional 
random field. The pioneers of kriging applications in hydro
meteorology were Delfiner and Delhomme [1973], Delhomme 
and Delfiner [1973], and De/homme [1978]. A number of years 
elapsed before hydrologists became widely acquainted with 
this method. Recently, the theory has been further developed 
and a pp lied tc rainfall related problems [ Chua and Bras, 1982; 
Creutin and Obled, 1982; Kitanidis, 1983; Bastin et al., 1984; 
Lebel and Bas tin, 1985; T abios and Salas, 1985]. Sin ce kriging 
is a linear minimum variance estimation method, it requires 
knowledge of the mean and covariance function of the 
randorn field. 

In applications to real-time estimation of area] rainfall, pre
vious studies [Bastin et al., 1984; Lebel, 1984; Lebel and 
Bastin, 1985] have led to the development of "'climatological 
kriging, .... i.e., kriging with a ••climatological variogram" as the 

co'variance function. The climatological variogram concept is 
presented in ~orne detail (definition, a.dvantages, identification. 
illustrations)· in the next section. With this approach, the 
weighting coefficients i.; are computed by solving an algebraic 
linea.r system (see the appendix). 

3. COMPUTATION OF THE EsTIMATION ERROR 

VARIANCE OF ÙNEAR EsTIMA TORS 

In the previous section, the Thiessen and spline linear esti
mators were presented within the deterministic fra.mework in 
which they are commonly used by hydrologists ~oday. In that 
framework, these methods obvious1y provide nd' measure of 
their accuracy. To provide such a measure, the estimation 
process must be considered in a probabilistic context. Accorda 
ingly, we shall hencefort.h assume that rainfall observaj}<ons 
are realizations of a two-dimensional random field. This flOint 
of view allows computation of the estimation error variànce of 
any linear estimator, whatever the method useè to compute 
the weighting coefficients /,:1: 

(cr/)2 =Var (2/- Z 1/) =Var (L i.;Z/- Z 1
6

) (5) 

which is also written 

(cr/)2 = :2: I i.1i.i Cov (Z/. Z/) 
•i j 

It is clear, from this expression, that practical computation of 
(crk 5

)
2 requires knowledge of the random field covariance funco 

tions which are not given a priori in most applications. Tbere
fore the preliminary inference of a model of this covariance 
function from the rainfall observations is the topic of the next 
section. 

3.1. Climatological V ariograms 

One possible method in volves separate identification of the 
covariance function for each realization of the field, i.e., at 
each time index k. This approach has been followed by De{fin
er (;md Delhomme [1973], Chua and Bras [1982], and Kitanidis 
[1983]. In our opinion, however, it bas two main drawbacks 
as follows. 

1. Most often, a large number of field realizations have 
been observed and are available for the inference of the coG 
variance function. By treating each realization separate]y, one 
makes only very partial use of the global statistical infor~ 

mation contained in the whole data set. 
2. A careful determination of the random field structure 

function at each time step may be too time consuming for 
real-time operation with· short time steps. Furthermore, reli~ 
able values of the model parameters cannot be obtained from 
a small number of data points (less than around 15-20). 

On the other band, it would, of course, be unrealistic to 
adopt a unique covariance function model for ali rainfall 
events irrespective of the sea.son, meteoro1ogical conditions, 
and rainfall intensity. On the basis of several previous investi
gations [Creutin and Obled, 1982; Bastin el al., 1984; Lebel 
and Bastin, 1985], it appears that a reasonable trade off is to 
adopt an analytical variogram model of the form 

Y(h; k) = o:(k)Y*(h, {J) (6) 

where h is the Euclidian distance, cx(k) is a scaling parameter, 
and fJ is a shape parameter. With this structure, all time nono 
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stationa.rity (i.e., dependence on the time index k) is con
œntrated in the scale factor œ(k), while the component Y*(h, p) 
(which we cali the .. scaled climatological variogram") is time 
invariant. 

In a region of relatively regular weather patterns, Bastin et 
al. (1984] successfully used a single climatological variogram 
Y* for the estimation of areal rainfall throughout the year. In 
such a case the scaling factor a(k) mainly reflects the seasonal 
variation of the spatial structure of the rainfall field. In regions 
where the climatic variability is stronger (as for the case study 
of this paper), a unique climatological variogram Y*(h, {J) is 
used only for storms issuing from the same kind of weather 
conditions. The parameter ~k) then mainly accounts for the 
scale effect due to the variation in time of the mean rainfall 
intensity. When the variogram is bounded we can impose, 
without loss of generality, that 

lim Y*(h, fJ) = 1 

œ(k) is then the variance of the kth field and Y*(h, {J), the 
unique variogram of all the scaled random fields defined by 

k = 1, ···, K (7) 

We can thus proceed to the identification of a model of the 
climatological variogram Y* of Z* by mixing the realizations 
of aH the fields Z1/'' together. This inference is performed using 
a ""mean~squared interpolation error" (msie) criterion [Lebel 
and Bastin, 1985] and is based on a much larger data set than 
the one which would have been used in a single-realization 
context. An exampJe relative to our case study will be briefiy 
described in section 4. An advantage of this approach is that 
the coefficients À.i of the kriging estimation are independent of 
a{k). Hence they depend only on the scaled climatological 
variogram Y*(h, {J). Therefore they can be computed once and 
for ali, as for the· Thiessen and spline estimators (note that if 
the climatological variogram is not used, and if the variogram 
is identified in real time, then the coefficients ;.i should also be 
recomputed at each time index k). 

3.2. U sing a Scaled Estimation Err or Variance to 
M easure the Estimation Accuracy 

A. byproduct of the climatological variogram approach is 
the possibility of computing a scaled variance of estimation 
error (cr

11 
")

2 that can be used. as a global (i.e., not relevant to a 
single event) comparative index of the accuracy of the areal 
rainfall estimation for various network densities. As a matter 
of fact, it is easy to show [Lebel and Bastin, 1985] that the 
estimation error variance (5) of any linear estimator can be 
written 

(8) 

with 

- ~ j l Y*(uu", {J) du du' + J.t (9a) 
s Js Js 

where. u; is the location of rain gage i, u and il are current 
points in S, u;u is the Euclidian distance between u; and u, and 
f.l is the Lagrange multiplier (in the case of zero-order drift). In 
practice, the integrais in (9a) are computed using the following 

discrete approximation: 

{J) + j.t (9b) 

Given expression (8), (cr" ")2 is the ratio between the areal rain~ 
fall estimation error variance and the field variance. 

Once the climatological variogram model has been chosen 
(i.e., once the value of fJ bas been chosen), the scaled esti~ 

mati on err or variance (cr .. 5 )
2 can be viewed as depending exclu= 

sively on the number and the locations of the rain gages. 
Therefore (cr .. ")2 is an efficient tool for solving rain gage net
work optimization problems such as the optimal choice of 
rain gage locations [Bastin et al., 1984]. Similarly, it will be 
used in this paper as the basic criterion for comparing the 
three linear estimators and for analyzing the influence of the 
network density on the estimation. Of course, the validity of 
this criterion must be checked, since by definition the kriging 
estimation error variance is lower than that of the other two 
methods. It must be further emphasized that (cr., ")2 is not the . 
variance of the actual areal rainfall estimation error (as can be 
seen from expression (8)), but provides a theoretical measure 
of the relative accuracies of the various estimates. This is why 
in the case study below these theoretical results, i.e., the com
putation of (u.,") 2 , will be accompanied by an experimental · 
verification. In this case study we intend to (1) assess the mag
nitude of the increase in accuracy that can be expected in 
practice when using kriging, (2) evaluate how (cr., ")2 increases 
as the network density decreases, and (3) experimentally verify 
the theoretical values computed in these two previous steps; 
this will test the reliability of climatological variogram infera 
erice and to a larger extent the climatological approach as a 
wh ole. 

4. CASE STUDY: CLIMA TOLOGICAL V ARIOGRAMS IN TIŒ 

CEVENNES REGION 

Thirty~four recording rain gages were used to study the 
areal rainfall over the Gardon d'Anduze watershed (Figure 1), 

0 5 10 15 20 km 

Fig. 1. Recording rain gage network over the Gardon d'Anduze 
watershed. 
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"" OPTIMAL ESH .. A,.ES OF 
!SCALEO CLIMATOLOGICAL VAAIOGRMAJ 

25 

Fig. 2. Fitting an empirical relation between the rainfall duration of 
accumulation and the range of the spherical variogram model. 

The basic data were the strongest hourly autumn rainfalls 
between 1971 and 1980. These rainfalls were accumulated to 
obtain 2, 4, 6, 12, and 24 hour rainfalls. Almost every severe 
flashfiood in this region takes place during the faU, and it bas 
been shown [Tourasse, 1981] that the high intensities (up to 
100 mm of water depth in 1 hour) _are the result of similar 
meteorological patterns. Thus the climatological approach of 
inferring the variogram seems very well-suited to this case. 

For each of the six time steps (1, 2, 4, 6, 12, and 24 hours), a 
careful identification study was carried out using the MSIE 
method, including an extensive cross-validation. A detailed 
description can be found in the work by Lebel [1984] and 
Lebel and Bastin [t985]. We give only the main results here as 
follows. 

1. A locally constant drift model and a spherical isotropie 
scaled climatological variogram model were selected; it should 
be emphasized that this structural choice (stationary drift, 
bounded and isotropie variogram ... ) is not arbitrary, but re
sults from a careful anaJysis (this point will be further com
mented in section 7). 

li! 
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2. The spherical variogram model is of the form 

Y*(h, Pl=~ {(3 ~)- Œ'} 
Y*(h, {J) = 1 h>{J 

where fJ is the range of the variogram. The optimal estimates 
of P arising from the identification study are illustrated m 
Figure 2, along whh the empirical relation \. 

p(8) = 258°·3 

that has been derived from these values. This relation aHows 
computation of P (and hence of the areal rainfall) at time steps 
for which the variogram was not inferred. 

3. As is shown in the previous section, cx(k) is the field 
variance (since the variogram is bounded). This field varie:ruce 
was found to be well-estimated by the sample variance of each 
realization, i.e., 

1 1'1 

ri(k) = - 2:, lz«; - m(k)l2 

n i=l 
(10) 

1 1'1 

m(k) =- 2:, .:/ 
ni= 1 

An example of the scaled climatological variogram model cor
responding to the time step 8 = 1 hour is shown in Figure 3. It 
can be seen that the model fits the experimental scaled vario· 
gram very weil. According to {i) this experimental variogram_ 
was obtained from the accumulation of 103 scaled field reali
zations: 

where (.:ki)*= zki/(ci(k)) 112 and z«i is the observed value of Z;.i· 

For further details, see Lebel and Bastin [1985]. 

5. COMPUT A TION OF AREAL RAINF AL REFERENCE VALUES 

: Using the dense network of Figure 1, hourly areal rainfalls 
were· computed with the three linear estimators. The basic 

.... ________ ...,. 

JI( .... ) 

40 50 60 

li/STAifCf 

Fig. 3. Fitting of an analytical mode! to a climatological experimental variogram. 
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Fig. 4. Subwatersheds of the Gardon d'Anduze watershed and the network of varying density used to evaluate the 
decrease in accuracy of areal rainfall estimation resulting from a lowering of the network density. 

2!27 

ample used to compare the three estimators is made up of the 
103 houri y events that allowed identification of the elima tom 
log]cal variogram (section 4). In addition, in order to account 
for the influence of the surface area, the main watershed of 545 
km 1 was divided into subwatersheds as shown in Figure 4. 

It was found that the three estimators are very close to each 
other and highly correlated (Table 1), especially for large 
catchments. The explanation is given in Table 2, where it can 

be seen that the weighting coefficients are very similar whato 
ev~r the estimator. Furthermore, the value of the scaled vari
ance (a/)2 was found to be 0.01 for the Gardon d'Anduze 
watershed. According to (8), this means that the scaled vari
ance of the estimation error is only 1% of the field variance, 
whatever the estimator used. Sirice aU three methods yield 
equivalent estimates and the theoretical error involved is fairly 
low, we will consider the areal rainfall (zk ")r computed by the 

TABLE 1. Correlation Coefficients r Between the Three Estimates of Hourly Areal Rainfall Over the 
Main Watershed (545 km) and Subwatersheds (Dense Network) 

Gardon Gardon Gardon Gardon Gardon 
Watersheds, St. André, St. Jean No. l, St. Jean No. 2, Mialet, Anduze, 

km2 53 165 265 237 545 

Kriging 
0.96 0.99 0.99 0.99 0.99 spline 

Kriging 
0.97 0.99 0.99 0.99 0.99 

Thiessen 
spline 

0.96 0.99 0.99 0.99 0.99 
Thiessen 
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TABLE 2. Weighting Coefficients of the Three Linear Estimators of 
Hourly Areal Rainfall Over Two Watersheds (18 Largest Values of 

34) 

Gardon Anduze, 545 km 2 Gardon Mialet, 237 k.m 2 

Ra in Rain 
Gage Thiessen Spline Kriging Gage Thiessen Spline Kriging 

212 128 134 129 210 189 190 190 
211 84 83 83 215 189 185 186 
207 73 83 69 209 189 156 144 
210 82 82 77 216 113 106 115 
202 75 77 72 207 109 94 99 
215 82 73 76 213 80 60 58 
208 67 73 68 212 29 56 62 
209 77 64 58 287 29 46 35 
268 58 61 54 211 29 45 12 
214 75 59 69 276 21 38 19 
216 56 57 53 206 0 20 7 
213 60 49 67 205 8 17 21 
226 18 24 27 280 0 12 8 
251 3 20 25 279 0 -11 -2 
280 7 18 17 251 0 11 4 
205 22 18 27 204 0 -10 3 
287 14 14 13 226 0 -10 7 
276 9 13 24 208 0 -9 -2 

Weighting coefficients are times 1000. 

Thiesseri [1911] method with the dense network of Figure 1 as 
the ~true.., reference value to which estimations from less dense 
networks will be compared. 

6. ESTIMATION ACCURACY VERSUS NETWORK DENSI!Y 

6.1. The Telemetered Network 

In the early 1970s, the decision was made to set up a flood 
warning and forecasting system over the Cevennes Region, to 
which the Gardon d'Anduze watershed belongs. Presently, 13 
telemetered stations are available in the upstream watersheds, 
nine of which are located within or not far from the Gardon 
d'Anduze watershed (Figure 4). It is of major importance to 
assess the Joss of information involved when using the tele
metered network for real-time computation of areal reainfalls 
as compared to the high-density network. Because the density 
of the telemetered network is fairly low compared to that of 
the entire network, three other intermediate density networks 
were considered (Figure 4). The network density is defined as 
the area (1450 km 2) of a circle containing the main watershed, 
divided by the number of gages located inside this circle. An 
important point here is that the information is collected not 
on1y from inside the watersheds, but from close outside areas 

TABLE 3. Arèal Rainfall Estimation (1/1 0 mm) Over the Gardon 
St. André Watersheds (53 km 2

), Stonn of September 12, 1976 

Hour 

4-5 ~ 6-7 7-8 8-9 9-10 

Dense Network 
Thiessen 0 2 179.4 151 13 11.5 

T elemetered N etwork 
Kriging 27 134 272 240 124 80 
Spline 10 118 446 466 52 28 
Thiessen 20 250 470 505 175 30 

TABLE 4. Scaled Variance of Hourly Areal Rainfall Estimation 
Err or 

No. of Stations 

17 14 11 Telemetered 
(112)"' (145)"' (207)'* (242)* 

Gardon a St. Andre (53 km2 ) 

Kriging 0.152 0.221 0.230 0.563 
Spline 0.234 0.274 0.298 \,. 0.899 
Thiessen 0.194 0327 0.327 0.814 

Gardon a :St. Jean (No. 1, 165 km2
) 

Kriging 0.040 0.054 0.063 0.148 
Spline 0.060 0.097 0.080 0.203 
Thiessen 0.047 0.067 0.078 0.21') 

Gardon de Mialet (237 km2 ) 

Kriging 0.028 0.040 0.113 0.185 
Spline 0.053 0.059 0.132 0.2, 5 
Thiessen 0.035 0.063 0.153 0.289 

Gardon de St. Jean (No. 2, 265 km2
) 

Kriging 0.033 0.039 0.042 0.080 
Spline 0.060 . 0.068 0.057 0.100 
Thiessen 0.039 0.049 01)54 0.110 

Gardon D'Anduze (545 km2) 

Kriging O.ûl5 0.020 0.039 0.074 
Spline . 0.020 0.030 0.049 0.091 
Thiessen 0.020 0.031 0.055 0.108 

"'Area per gage, km2• 

as weil. The stations used for the areal estimation cover the 
main watershed and the surrounding area, preventing border 
effects from înfiuencing the estim~tion. As cari be seen in Table 
3, for few 1-hour events, substantial differences may exist be
tween the results of the three estimation methods when using 

. the telemetered- networks, thus justifying concerns about the 
accuracy of the estimation and the need to examine it for each 
method. 

6.2: Theoretical Variances of Estimation Error 

The scaled variances of estimation error computed using 
(9b.) provide overall comparison criteria, regardless of the 
magnitude of a given event. The results of these computations 
are summarized in Table 4 and illustrated in Figure 5. We can 
draw the following conclusions. 

1. Whatever the method considered, the estimation error 
variance increases in a fairly regular way as the network den
sity decreases; it tqps at 90% of the scaled field variance when 
the spline estimate is used with the telemetered network on 
the smallest watershed. · 

2. The spline estimate is, in general, not much better than 
the Thiessen estimate [Thiessen, 1911] even though it is often 
considered as a more sophisticated (bence more accurate) 
method. For severa! smaH watersheds, the spline estimates are 
even Jess accurate than the Thiessen estimates. 

3. By contrast, one can observe the large differences that 
always exist between kriging and the ether estimates, es
pecîally when it cornes to Jow-density networks. This latter 
observation, however, does not necessarily lead to the con
clusion that climatological kriging is better. It can simply re
flect the fact that the estimation error variances of Table 4 
were computed with the same variogram used to estimate the 
kriging weighting coefficients (bence biasing the results in 
favor of kriging). 
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Fig. 5. Scaled estimation variance of hourly areal rainfall as a rune
rion of watershed area for various network densities. 

Actually, the conclusion that kriging· is better (in a way that 
can be evaluated with Table 4) holds only if the theoretical 
variance (a,/)2 computed from the variogram modelisa realis
tic measure of the· actual estimation variance ( whatever the _ 
estimator considèred). This is the reason why we believe that 
an·expèrimental validation analysis based on the .. true" refer
ence values defined in section 5 is needed to check the validity 
of the results of Table 4. This validation analysis will be the 
main point of this section. 

6.3. Experimental Validation 

Experimental validation was carried out in two ways: (1) by 
computing correlations between the true reference values 
(.:/JT (section 5) and the low-density network estimates z/ on 
a s.ample of ho url y rain events and (2) by counting the number 

." times that the reference value belongs to the theoretical 
confidence interval (Cl) of the estima te. Computation of corre
lation coefficients allows an a posteriori assessment of the 
cofluctuation of tested estimations and reference values. It is 
worth noting that these true values are independent of the 
variogram model used to compute the estimation error vari
ance, since Thiessen estimates [Thiessen, 1911] were taken as 
the reference. 

The data set used for the computation of the correlation 
coefficients between the reference values and the various areal 
estima tes was enlarged to include 200 houri y events; i.e., 97 
events not used in the variogram model inference were taken 
into account. The Thiessen estimations [Thiessen, 1911] using 
the dense network were computed for the 200 events, making 
up five reference data sets (one for each subwatershed). Thies
sen, spline, and kriging values were computed using four other 
networks of decreasing densities thus making up twelve data 
sets for each subwatershed to be compared to th!! correspond-
ing reference data set. · 

The histogram in Figure 6 shows the distribution of the 
reference Thiessen values (z~~: ~T over the Gardon d'Anduze 

watershed for the 200 events. Simultaneously, with the corre~ 
lation coefficient, the following accuracy criterion E, was com
puted: 

= {{!. ± lzlt.t- (Zs.')Til}}l/2/; }_ ± 
Kl<=l K«=1 

The variation of correlation coefficients (Table 5) with the 
network density and the watershed area is very similar to the 
variation of the scaled estimation variances (Table 4) and so is 
the variation of the accuracy criterion Er (Figure 7). It is es
pecially noteworthy that the smaller the watershed and the 
lower the density, the greater the difference between estimates. 
In addition, kriging data sets are always the _most correlated 
with reference data sets and display the lowest values of as 
weiL 

These results are a strong indication that kriging is more 
accurate than the two other estimates, when low-density net
works are used. The interest of this test is that it a pp lies to the 
actual rainfall process Z~~: and not to the scaled random field 
Z" *. It must be noted that both the correlation coefficients 
and the values of the accuracy criterion Er are in good agree
ment with the theoretical scaled variances of estimation error 
given in Table 4. An experimental procedure was then derived 
to test both the accuracy of the estimators and the reliability 
of the theoretical variances of estimation error. This procedure 
is as follows. 

Computation of (a./)2 and the sampling variance of the kth 
field ~(k) allows computation of the theoretical unscaled vari
ance of the estimation error (ut ~2 using (8). For each subw_a
tershed, the value of (au ~2 is given in Table 4, while the value 
~(k) is the same for every watershed since it is a characteristic 
statistical parameter of the field; œ(k) is computed with the 
dense network in order to provide an accurate as possible 
estimation of the true variability of the field. 

Once this has been do ne, the theoretical confidence interval 
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Fig. 6. Class repartition of the 200 reference values used for the 
correlation test (Thiessen [1911] estimates, dense network). 



2130 LEBEL ET AL.: AcCURACY OF AR.EA.L R.AINFALL EsnMAnoN 

TABLE 5. Correlation Coefficients Between Reference Areal Rain
falls Computed With the Dense Network of 34 Stations and Various 

Estimates (200 Events) 

No. of Stations 

17 14 11 
(112)* (145)* (207)* 

Gardon a Sr. Andre (53 km2 ) 

Kriging 0.98 0.96 0.91 
Spline 0.96 0.92 0.86 
Thiessen 0.96 0.84 0.84 

Gardon a St. Jean (No. l, 165 km2) 

Kriging 0.96 0.94 0.93 
Spline 0.95 0.92 0.89 
Thiessen 0.92 0.91 0.86 

Gardon de Mialet (237 km2
) 

Kriging 0.99 0.96 0.87 
Spline 0.99 0.96 0.78 
Thiessen 0.98 0.93 0.76 

Gardon a St. Jean (No. 2, 265 km2 ) 

Kriging 0.99 0.96 0.87 
Spline 0.99 0.96. 0.78 
Thiessen 0.98 0.93 0.76 

Gardon D'Anduze (545 km2 ) 

Kriging 0.98 0.96 0.93 
Spline 0.98 0.96 0.91 
Thiessen 0.97 0.94 0.91 

'*A rea per gage, km 2• 

of the estimation is expressed as 

(z/f ± cq/ 

Telemetered 
(242)* 

0.49 
0.32 
0.14 

0.78 
0.68 
0.64 

0.85 
0.74 
0.76 

0.85 
0.74 
0.76 

0.87 
0.86 
0.83 

(11) 

where c is a ·constant wh ose value defines the amplitude of the 
confidence interval, and q" J is the theoretical unscaled stan
dard deviation of estimation error; 

Next it is determined whether or not the reference value z/ 
belongs to the theoretical confidence interval. If the distri
bution of errors is assumed to be Gaussian, zks should belong 
to the confidence interval 68 times out of a hundred for c = 1, 
and 95 times out of a hundred for c = 2. 

The test was performed using the reference data sets of 200 
hourly events set up to compute the correlation coefficients 
above. The scores of Table 6 are the average over the 200 
events for eacb watershed and each network. It can be seen 
that except for the smallest watershed, the proportion of true 
values belonging to the theoretical one standard deviation 
confidence interval remains around the expected value of 0.68. · 
For the Gar4on St. André watershed, the ampliitude of the 
confidence interval appears to be overestimated: kriging and 
Thiessen scores are greater than 0.80, and spline scores are 
greater than 0.70, which means that respectively less than 20 
and 30%, respective! y, of the true values are outside the inter
val, while the·expected proportion is 32%. Conceming the two 
standard deviation irttervals, the experimental proportions of 
"bits" are very close to the expected theoretical value of 0.95, 
except for the second smallest watershed (Gardon St Jean 
number 1; 165 km2). For this watershed, the CI amplitudes 
are slight1y underestimated, since every score is under 0.95. 

Another general pattern of Table 6 is that spline CI ampli
tudes are often underestimated (scores smaller tban the ex
pected value). While it is difficult to explain why the theoreti-

cal computations of u/ are more erroneous for the spline 
estimate than for the two others, the overall performance of 
the test is gbod. Although it may be argued that the distri
bution of errors is not really Gaussian, the tbeoretical values· 
of the estimation error variances obtained with the dimato
logical variogram are thus experimentally valid indicating that 
kriging is by far the most accurate estimate among the three 
studied here. As a consequence, the curves of Figure 5 may be 
deemed relevant in assessing the performance of one of the 
network considered herein, with respect to the\. area of the 
watersbed and the network density. 

7. CûMMD.'TS AND CoNCLUSiONS 

The two main concerns of this paper were first to derive a 
methodology for assessing the accuracy of areal rainîa[ esti
mation, and second, to study in a region of intense pre. ipi~ 
tation the variations of this accuracy when networks of ~'ary
ing densities are employed, using three different linear esti
mators. This methodology is based on a so-ca.Ued scaled cli
matological variogram which accounts for the genera] pattern 
of the rainfan spatial organization over a given region. When
ever the inference of this variogram i~ possible, the scaled 
variance of estimation error of any linear estimator is com
putable, tl) us pro vi ding theoretical cri teri on for overall com
parison of these estimators. The climatological variogram is 
also the basic tool. of climatological kriging, a ·kind of kriging 
that is especially well·suited to rainfall analysis. 

In the case study, an experimental confirmation of the theo
retical values of the estimation error variançe ·was obtained. 
This was carried out not only with the events used for the 
inference of the climatological variogram, but with additionaJ 
events as well, thus proving the._!obustness of the climatologi~ 
cal variogram inference· process. Çonceming the transformao 
tion of the sca)ed variance of estimation error into the un~ 
scaled variance of the kth field, it proved better to compute 
the sca]e parameter cx(k) as the spatial sample variance over 
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TABLE 6. Percentage of Reference Values Belonging to the Theoretical Confidence Interval · 
Computed With {11) 

Gardon Gardon Gardon Gardon Gardon 
a St. Andre, a St. Jean. de St. Jean, ·de Mialet, D'Anduze, 

53 km 2 No. 1, 165 km 2 No. 2, 265 km 1 237 km 1 545 km 

2 2 2 2 2 

Kriging 
17 0.88 1.00 0.60 0.79 0.72 0.88 0.81 0.96 0.69 0.97 
14 0.82 0.96 0.58 0.85 0.69 0.90 0.67 0.92 0.68 0.93 
11 0.85 0.96 0.65 0.87 0.69 0.91 0.70 0.96 0.72 0.94 

Teleme- 0.82 0.98 0.68 0.90 0.70 0.95 0.69 0.95 0.73 0.96 
tered 

Spline 
17 0.70 0.93 0.53 0.85 0.57 0.87 0.73 0.98 0.60 0.90 
14 0.71 0.95 0.56 0.89 0.61 0.90 0.63 0.91 0.61 0.87 
11 0.77 0.96 0.61 0.86 0.65 0.88 0.65 0.96 0.71 0.95 

Tel erne- 0.85 0.98 0.69 0.95 0.64 0.95 0.66 0.96 o.n 0.97 
tered 

Thiessen 
17 0.87 0.98 0.67 0.87 0.80 0.94 0.78 0.96 0.75 0.96 
14 0.79 0.94 0.66 0.91 0.77 0.92 0.70 0.92 0.71 0.92 
11 0.79 0.96 0.68 0.86 0.72 0.92 0.56 0.95 0.63 0.95 

Tel erne- 0.81 0.97 0.69 0.94 0.79 0.96 0.65 0.96 0.70 0.97 
tered 

Here 1, 1 standard deviation interval (Z.,Sf + ats (theoretical percentage assuming a Gaussian distrio 
bution of errors is 0.682); 2. 2 standard deviation interval (Zts)T ±mt" (theoretical percentage assuming 
a Gaussian distribution of errors is 0.954). 

the whole network area rather than the variance over only the 
watershed concern~d. As can be seen in Table 7, this point is 
especia.lly important for watersheds of small size compared to 
the range of correlation. In this table, the confidence intervals 
obtained when computing a(k) in two different ways are como 
pared. The watershed is 53 km2 in area, which means a 
characteristic length of 7-8 km, while the correlation range is 
25-30 km. It is clear that computing a(k) as the variance of the 
kth event over the watershed results in an overestimation of 
the error variance for heavy rainfalls and in an underestima
tion cf the error variance for light rainfalls. 

correlation range of the ·rainfall, rather than to the area of the 
watershed over which the estimation is performed. It is, of 
course, also necessary to select the stations in such a way that 
the watershed(s) is located in the center of the network area. 

On the other hand, the network area must not be too large, 
because the larger the area, the more zero rainfalls might be 
included in the sample, thus leading to an artificial decrease of 
the field variance (this is the "hole effect" well-known to krig
ing users). Finally, the area covered by the network used to 
perform any areal rainfall estimation should be related to the 

While the above comments may be deemed gçnerally valid, 
providing the climatological variogram is a realistic model of 
the spatial covariance function of th~ rainfall, further con~ 
clusions may be drawn that apply to regions of similar geo
morphoclimatic characteristics to the one studied here. The 
fust such conclusion is related to the structure of the spatial 
covariance model used throughout this paper. 

Despite the rough topography of the region and intense 
precipitation, a spherical variogram associated with a zeroQ 
order drift allowed computation of accurate values of the vario 
ance of estimation error. Of course, this is probably not the 
only model that would have yielded good results, but it was 
also shown that a not too realistic model, such as spline genero 

TABLE 7. Variations of the Theoretical Confidence Intervals With o:(k), Gardon St. Andre 

Dense Network Telemetered Network 

Reference 
Value, Kriging 

Event k mm (o:(k))lll• (o:(k))lllt Estima te (u/)* CI* 

Aug. 28, 1976, 25.7 
3-4 P.M. 

23.9 8.8 15.8 19.1 6.6 
12.5 

Oct. 23, 1977, 12.7 
11-12 A.M. 

10.9 10.7 3.5 4.6 8.1 -3.5 

Telemetered network: uu" = 0.75. 
"'Spatial sample variance of the kth event computed over the whole network area. 
tSpatial sample variance of the kth event computed over the watershed area (53 km 2). 

(ul<')t 

11.8 

2.7 

Cit 

30.9 

7.3 
7.3 

1.9 
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Fig. 8. Theoretical scaled estimation variance of areal rainfall as a function of watershed area, gage area, and time step. 

alized covariance, performs far poorer than the spherical 
model. As _was shown by Lebel [1984], the question of the 
order of the drift is not of prime importance. Two reasons 
may contribute to that: ( 1) the drift actually used in the esti
mation process is a local drift since kriging was performed 
over a sliding neighborhood and (2) for time steps shorter 
than 24 hours the relation of rainfall depth of a particular 
event to the topography is not as strong as it can be for 
great er ti me steps. Ch ua and Bras [ 1980] also found that a 
zerooorder drift mode] provide accurate values of the vari
ances of estimation error for storm data collected in the San 
Juan Mount~ins.· This supports the idea that using compli
cated covariance models in rainfall analysis is often not worth
white, at !east in the best linear unbiased estimator context. 

The spherical model is a convenient tool, for it provides a 
value of the· decorrelation distance. In the Cevennes region, 
the relation between this ,distance and the time step of rainfall 
accumulation seems to be well-approximated by a power type 
function. This allows computation of the range (decorrelation 
distance) for any time step between 1 hour (25 km) and 24 
hours (65 km). Since the procedure of theoretical estimation 
error variance computation was validated experimentally on 
hourly data, extension of the method to other time steps ap-

pe~red founded. The kriging scaled variances were computed 
for six time steps (1, 2, 4, 6, 12, and 24 hours) with the vario~ 
gram model inferred from experimenta] variograms (see values 
of the range in Figure 2). An accuracy measure of the kriging 
interpolation process was thus available for various network 
densities, watershed areas, and time steps of rainfall accumula
tion. This information is summarized in Figure 8. For clarity, 
only a few values are marked in the chart, but other values are 
easy to infer because the distance between the parallel straight 
lines is relatively small. 

Using the chart of Figure 8, it is possible to evaluate wheth
er or not the density of any network meets a desired accuracy 
with respect to a given time step and a given watershed area. 
This is of interest in assessing existing networks as well as in 
designing a future network. Furthermore, values of the esti
mation error variance may be derived for time steps at whicb 
no data were collected, providing that a good estimation of 
the correlation range is possible. This is of particular interest, 
since the time desired is often dependent on the watershed 
response to the rainfall input. In many cases, no data are 
available at that time step, but the chart allows an a priori 
assessment of the expected variance of estimation error, before 
any further study or investment are considered. Although the 

-! 
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general patterns of this chart are similar to those given by 
Huff[1970] in Illinois and Woodley et al. [1975] in Florida, it 
would be, of course, unwise to extrapolate the results to other 
areas. 

Concerning the accuracy of areal rainfall estimation wîth 
the telemetered network, note that the scaled kriging variance 
of estimation error remains lower than 10% for watersheds of 
areas greater than 100 km2

• This indicates that ground-based 
networks provide a sufficiently accurate estimation for hourly 
areal rainfall in this region, since for smaller watersheds one 
would probably have to work at a time step smaller than 1 

~ hour. However, it must be kept in mind that this region is very 
well-instrumented, and conversely this approach has proved 
that in many other :t'rench region an accurate real time esti
mation of areal rainfall is still impossible with currently avail
able data. Given the results of this paper, the increase in accu
racy that can be expected from the use of meteorological 
radar, compared with relatively dense telemetered networks, 
should be studied carefully to help hydrologists decide which 

''ltion is best suited. to a given problem. 

APPENDIX: UNIVER.SAL KRIGING AND SPLINE FUNCTIONS 

The objective of this appendix is to recall briefiy the tech
nique of universal kriging for spatial averaging from a finite 
set of pointwise observations and to recall that the spline 
surface fitting method is in fact a special case .of. the universal 
kriging technique. We use the following notations; cartesian 
ooordinates of a current point in the plane R 2

: 

u =(x, y) 

vector of available point wise observations: 

(Z")T = [z(u1), · · ·, z(uJ, · · ·, z(u,.)] 

with u1 = (x 1, y 1) • • • u,(x,., y,J the coordinates of the data 
points. The superscript T denotes the vector ~ranspose. 

Universal Kriging 

The spatial phenomenon of interest (here the rainfall depth 
accumulated over a given time step) is assumed to be a two

:iensional nonstationary random field that can be written 

Z(u) = m(u) + Y(u) 

where Y(u) is a zero-mean stationary field, and m(u) is the 
mean of the. field Z(u), also called the drift. It is assumed that 
at least locally, it can take the following polynomial form: 

L 

m(u) = E[Z(u)] = L ~J~u) 
l= 1 

where the functions f~u) are known monomials in u while the 
coefficients ~ 1 are ~nknown. 

The spatial mean over the surfaceS of the random field Z(u) 
is defined as the random variable 

zs = ~ l Z(u) du 
s Js 

The universal kriging problem is then the problem of finding 
an optimal (linear, unbiased, minimum variance) estimator of 
zs. It is well~known [e.g., Matheron, 1973] that whatever the 
polynomial drift considered, a so-called "generalized covari
ance function ... allows for the solution of this estimation prob
lem. The generalized covariance function is denoted C(u;, u) 

for any (u;. ui) current points in R'- and is implicitely defined 
by the following expression: 

where 

L ).;Z(ui) 
i=O 

is a zero-mean generalized increment filtering out the drift. 
This means th at the ).ï are such as satisfying L relationships: 

Il 

L i.Jlui) = 0 l = 1, · · ·, L 
i= 1 

Then, the optimal estimate of zs is given by 

zs = L i.iZ(uJ = AT Z" 

where the vector A is computed 

(Al) 

(A2) 

where C is a (n x n) matrix ·with entries C(ui, u) and ET is a 
(L x n) matrix of the form 

[

ft(ul) · · · 

ET= f2(ul) ... 

fL(ul) 

f1(u,.)] 

f'l.(u,J 

JL(u,) 

Cs is a column n vector with entries 

i = 1, · · ·,n 

Es is a column 1 vector with entries 

~ r fr(u) du 
sJs l = 1, ···, L 

J1 is a vector of Lagrange multipliers. Since zs is unbiased, we 
have 

Therefore it turns out that zs is a weighted mean of the 
observations z(ui). 

Spline Surface Fitting 

As it h~ been pointed out by Matheron [1980], the spline 
surface fitting method to compute a linear estimate of zs can 
be shown to be a special case of the universal kriging tech
nique (see also Dubrule [1982]). corresponding to the follow~ 
ing structural choice. A first-order drift: 

m(u) = Y1 + Y2x + Y3y 

A generalized covariance function of the form 

C(ui, ui) = lui - uil2 log lui - uii 

From (Al) and (A2) we can write 

ts = [C, '. E, '] [~] (A3) 
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where the vectors 'qlr = 
defined by 

(A4) 

Then the link with the usual mechanical interpretation of the 
spline technique is as follows. 

1. It can be easily shown that the optimal estimate :zs 
given by (A3) is equivalent to the following where Z(u) is the 
••spline surface"': 

Z(u) = Y1 + Y2x + · Y3y + L \f'iC(ui, u) (A5) 
i= 1 

2. The coefficients (\f', Y) given bv (A4) correspond to the 
miniinization of the bending energ;; of a thin elastic plate 
supported by the observations [Duchon, 1976]. Therefore the 
function (A5) is called a .. thin plate" spline surface. 
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