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A B S R A C T  

The dynamics of non holonomie mechanical system are described by the classical Euler- 
Lagrange equations subjected to a set of non-integrable constraints. Non holonomie 
systems are strongly accessible whatever the structure of the constraints. They cannot be 
asymptotically stabilized by a smooth pure state feedback. However smooth state 
feedback control laws can be designed which guarantee the global marginal stability of 
non holonomic systems. 

1. I N T R O D U C T I O N  

A mechanical system, whose configuration is completely described by a set of 
generalized coordinates, can be subjected to kinematic constraints (such as the pure 
rolling condition of a wheel on a plane), which are expressed by relations between the 
coordinates and their time derivatives. If these constraints are holonomic (that is 
integrable) it is possible to characterize the system configuration by a smaller number of 
coordinates (i.e. to use the constraints in order to eliminate the redundant coordinates) in 
such a way that the constraints are automatically satisfied in the new coordinates. 
Unfortunately, in case of non holonomic constraints, this elimination is not possible and 
the constraints have to be taken into account explicitly in the derivation of the dynamical 
equations. The theory of mechanical systems with non holonomic constraints has been 
developped at the end of last century by many authors (e.g. AppeU [1], Hamel [2]). The 
present paper deals with control design of such systems, for which, due to the 
nonholonomic constraints, the standard control laws developped for holonomic 
mechanical systems (for instance robotic manipulators) are not applicable. 
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Control of mechanical systems, with not integrable constraints which arc linear in the 
generalized velocities, has been discussed in the literature through the special case of 
mobile wheeled robots (see e.g. [3, 4, 5]). In these papers however, the control is 
designed on the basis of a kinematic state-space model derived from the constraints, but 
not taking the internal dynamics of the system into account. The purpose of this paper is 
to derive a full dynamical description of  such nonholonomic mechanical systems, 
including the constraints and the internal dynamics, and to show how a suitable change of 
coordinates allows to analyse globally the controllability and the state feedback 
stabilizability of the system. The feedback stabilizability of mechanical systems with 
constraints (holonomic or not) is also examined by Bloch and McClamroch [9]. 
However, they use another change of coordinates which is less efficient since it provides 
only local stability results and is not convenient for a controllability analysis. 

The paper is organized as follows. The concept of  non holonomic constraints for 
mechanical systems is introduced in Section 2 within the framework of the theory of 
nonlinear control systems. The dynamics of  non holonomic systems can be partially 
described by a so-called kinematic state-space model. In Section 3.1, it is shown that this 
model is completely controllable. The existence of smooth stabilizing state feedback 
controls is then addressed in Section 3.2. It is shown that the origin of the generalized 
coordinates cannot be asymptotically stabilized by a smooth pure state feedback but can 
nevertheless be globally maginally stabilized. A general dynamical state-space model of 
non holonomie systems is then derived in Section 4, using the classical Euler-Lagrange 
formalism. By a suitable change of coordinates,this model can be partially linearized in 
such a way that the remaining nonlinearities only depend on the structure of the 
constraints. On this basis it is then shown, in Section 4.1, that non holonomic systems 
are strongly accessible whatever the structure of the constraints. Furthermore, as shown 
in Section 4.2, the stabilizability results of Section 3.2 can be extended to the general 
case: non holonomie systems cannot be asymptotically stabilized by a smooth pure 
feedback control but can be globally marginally stabilized. The design of the stabilizing 
control law is explieited. 

2. N O N H O L O N O M I C  CONSTRAINTS 

We are concerned, in this paper, with mechanical systems whose configuration space is 
an n-dimensional simply connected manifold M and whose dynamics are described, in 
local coordinates, by the so-called Euler-Lagrange equations of motion. Usually, the local 
coordinates used for the description of these systems are termed "generalized 
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coordinates" and denoted ql, q2 ..... tin. Each configuration of the system is represented 
by the vector of these generalized coordinates and is denoted: 

q -= [ql, q2 . . . . .  qn] T 

The configuration manifold PL, which is the set of  all possible configurations, is 
represented in local coordinates by an open set ~ ~ [R n. The position of each material 
point of the system is a function of the generalized coordinates. A motion of the system is 
represented in the q coordinates by a smooth time function q(t). The corresponding 
trajectory is a one-dimensional immersed submanifold of PL. The tangent vector at a point 

of  the trajectory is then represented by the vector Cl-[~ll, b~. . . . . .  ~ln]Twhose 
components ell, q2 . . . . .  Cln are termed generalized velocities. 

In many instances, the motion of mechanical systems is subjected to various constraints 
which are permanently satisfied during the motion and which take the form of algebraic 
relationships between the positions and the velocities of particular material points of the 
system. Two kinds of constraints can be distinguished: geometric constraints and 
kinematic constraints. 

Geometric constraints. 

These constraints are represented by analytical relations between the generalized 
coordinates. When the system is subjected to m such constraints, there exists an m- 
dimensional vector function p(q) : f~ ~ I ~  such that p(q) = 0 for all q in fL The m (<n) 
constraints are said independent when the jacobian matrix of p(q) has full rank for all q. 
In that case m generalized coordinates can be eliminated and n - m generalized coordinates 
are sufficient to provide a full description of the configurations of the system. 

Kinematic constraints. 

These constraints are represented by analytical relations between the generalized 
coordinates and velocities. In most applications, these relations are linear with respect to 
the generalized velocities and written as: 

~(q)q = 0 (1) 

where al T, a~ . . . . .  arm are smooth n-dimensional covector fields on PL. In matrix form, the 

constraints (1) are written : 

AT(q)~t = 0 

where A(q) is the (n x m) matrix made up of  the vector functions aj(q) as follows: 
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A(q)m[al(q),  a2(q) . . . .  ,am(q)] 

The m (<n) constraints are said independent when this matrix has full rank for all q. 
Unlike geometric constraints, the kinematic constraints do not necessarily lead to the 
elimination of generalized coordinates from the system description. The elimination is 
possible only when the constraints are holonomic (that is: integrable). Our concern in this 
paper will precisely be to discuss the controllability and the feedback stabilization of 
mechanical systems with nonholonomic constraints. 

Hence, without loss of generality, we can consider that all the redundant generalized 
coordinates associated to the geometric constraints have been eliminated and restrict our 
attention to mechanical systems subjected to m independent kinematic constraints only. 
These constraints are assumed to have the form (1). 

We assume that the annihilator of the codistribution spanned by the covector fields 
a~,a~ . . . .  T ,a m, is an (n-m)-dimensional smooth nonsingular distribution A on Y£. This 
distribution A is spanned by a set of (n-m) smooth vector fields sb s2 ..... Sn.m : 

A = span{s 1, s 2 .. . . .  sn_ m} 

which satisfy, in local coordinates, the following relations: 

aT(q)si(q) = 0 'Vq~ f~ j = 1 ..... m i = 1 ..... n -m 

Since A is nonsingular, any vector field 't of  A can be expressed in the form: 
n- - I l l  

"~(q) = i=~l ci(q)si(q) 

where cl(q), c2(q) ..... cn-ra(q) are smooth functions on f~ (see e.g. Isidori [6], Chapter 

1, Section 1.3). 

We introduce also the full rank matrix S(q) made up of the vector functions si(q): 

S(q) -- [sl(q),s2(q) .. . . .  Sn_ra(q)] 

It is then clear that the constraints (1) may be expressed as: 

Cl ~ A(q) or equivalently Cl E Im[S(q)] 

Consider now the involutive closure of A, denoted A*, and defined as the smallest 
involutive distribution containing A. Assume that this distribution is regular (that is has 
constant dimension on ~'£). Clearly: 
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n - m < dim(A*) < n 

Let (n - m*) denote the dimension of A*, with m* < m. From Fr6benius Theorem, at 
each q in f~, there exists a set of m* independent smooth functions denoted Iq(q), I~(t0, 
.... iam.(q), such that, for each vector field 'r e A* the following relations hold : 

£'~t.(q) = 0 i = 1 ..... m* (2) 

where £'rgi denotes the Lie derivative of la i along x. 

Let us now define a change of  coordinates ~ = @(q), with @(0) = 0, with m* coordinates 
being the functions gl(q), bt2(q) ..... btm.(q), and the remaining n-m* coordinates being 
chosen to complete the diffeomorphism: 

%(q) 
qh(q) 

%-m*(q) 
= OCq) = it1(q) 

~(q) 

l.tm*(q) 

Hence the tangent vector to the trajectory at the point ~ = ~(q)  is represented in the 

coordinates by ~, with : 

~m Im [ (--~q)~_,(~)S (*-t(~))] 

It then follows from (2) that, since Cl e A(q), the last m* components of ~ are identically 
zero: 

~._m*+l = ~._mO+2 . . . . .  ~n=O 

This means that the m* coordinates ~n-m'+l, ~-m*+2 ..... ~n which are identical to the m* 
functions }.t i are constant along the motions of the system. 

Then, depending on the dimension of A*, several situations may arise: 

a) If m* = m (that is if A is involutive) the system is said to be holonomic .  The 
configuration space can be characterized with (n-m) coordinates only, namely ~t, ~2 ..... 
~n-m" The configuration space is thus an (n-m)-dimensional manifold. 
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b) If m* = 0 (that is if dim(A*) --- n) the constraints are completely nonintegrable and the 

system is said to be nonholonomic. The characterization of the configuration space 
requires n coordinates. 

e) If 0 < m* < m it is possible to eliminate m* coordinates. The configuration space is a 
manifold of dimension n - m*. 

Without loss of generality, we can thus assume that all the geometric and all the integrable 
kinematic constraints have been eliminated from the system description and restrict our 
attention to the situation b) that is to nonholonomie mechanical systems evolving in an n- 
dimensional configuration manifold and subjected to m independent nonintegrable 
constraints. 

3. THE KINEMATIC STATE-SPACE MODEL : C O N T R O L L A B I L I T Y  
AND F E E D B A C K  STABILIZATION 

The dynamics of  nonholonomic mechanical systems are partially described by a state- 
space model which is associated to the kinematic constraints and referred to as the 
kinematic state-space model. Our purpose, in this section is to examine the controllability 
properties of this model and to discuss its state feedback stabilization. 

Along the motions of the system, the constraints (1) imply the existence of a vector time 
function w(t) e IR n ' m  for all t, such that: 

~1 = S(q)w(t) (3) 

where S(q) is the matrix defined above. Conversely, for any initial condition q(0) and 
any time function w(t), the solution q(t) of (3) will satisfy the constraints (1) and be a 
possible motion of the system. 

Hence the model (3) can be interpreted as an n-dimensional state space representation of 
the motion of a nonholonomic mechanical system with state q and control input w. 
Obviously, for a given choice of  the generalized coordinates, this representation is not 
unique since it depends on the particular selection of the basis (i.e. the vector fields sO of 
the distribution A. 

3.1. C o n t r o l l a b i l i t y .  

It follows immediately from the property of  nonholonomy of the constraints that thc 
strong accessibility rank condition (sec [10]) is satisfied for all q e f2 and, therefore, that 

the system (3) is strongly accessible from any configuration. Furthermore, since equation 
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(3) does not contain a drift vector field, strong accessibility implies controllability (see 
e.g. Nijmeijer and van der Schaft [7], Chapter 3, Section 3.1). We thus have the 
following result. 

Lemma 1. The kinematic state space model of a nonholonomie system is controllable. • 

In practice, this means that for any two configurations qO) and q(2) in f2, there exists a 

finite time T and an input function w(t) such that ff q(0) = qO) then q(T) = q(2). It is 
however worth noting that this does not mean that any velocity can be achieved since the 
generalized velocities are constrained to belong to the (n-m)-dimensional space spanned 
by the columns of S(q). 

3 .2 .  S t a t e  f e e d b a c k  c o n t r o l .  

In this section, we are concerned by the question of the existence of smooth pure state 
feedback stabilizing control laws for the kinematic state space model (3). More precisely, 
we would like to stabilize the system at a particular configuration which may be taken, 
without loss of  generality, as the origin of  the generalized coordinates (i.e. q = 0). 

A smooth pure state feedback control law for the system (3) is defined as a smooth 
mapping: 

w: f~ ~ [R n-m : q ~ w(q) 

with the property that w(0) = 0. The application of this control law to the kinematic model 
(3) yields closed loop dynamics of the form: 

q = S(q)w(q) (4) 

which have the origin q = 0 as equilibrium point. Our concern is to find feedback controls 
w(q) that make this equilibrium point stable. Several definitions of the stability of 
equilibrium points are however in order here. 

Defini t ions .  

The equilibrium point q = 0 is Lagrange stable if, for any initial condition q(0) = q0, there 
exist a bound b(q0) such that Ilq(t)ll < b(q0) for all t. 

The equilibrium point q = 0 is asymptotically stable (in the sense of Lyapunov) if there 
exists a positive constant e such that if II q(0) II < e, then q(t) is bounded and converges 
to zero as time tends to infinity. 
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The equilibrium state q = 0 is (globally) marginally stable if it is Lagrange stable but not 
asymptotically stable. 

It follows from the controllability of the system (I,emma 1) that there exist control laws 
which ensure the convergence of q(0 to zero. However the controllability does not imply 
the existence of a smooth feedback control law which can make the origin asymptotically 
stable and which can be synthetized as a smooth function of the state q only. In fact, it is 
easily shown that such smooth feedback stabilizing controls do not exist for 
nonholonomic systems. 

Lemma 2. The equilibrium point q = 0 of the closed loop system (4) cannot be made 
asymptotically stable by a smooth state feedback w(q). 
Proof. From the smoothness of A(q) and the independence of the constraints, it results 
that there exists a neighbourhood of the origin in ~n say U0, such that a given set of m 
rows of A(q) are independent on U0. Without loss of generality, we assume that the first 
m rows of A(q) are independent on U0, and we partition A(q) as follows: 

A(q) = fAl(q) ~ 
~,A2(q)) 

where Al(q) is a square matrix, non singular on U0. 
Define a neighbourhood U 1, in ~n-m, containing the origin, and 13. as the cartesian 
product of U0 by U1. Consider the following mapping, inspired by Eq.(4): 

(q,w)~g(q,w) =S(q)w 

and denote P,the image of U by this mapping g. 
Then, for any c belonging to P ,  there exists q such that a belongs to Im(S(q)) and 
Iherefore that 

AT(q)ol+A~(q)oz = 0 
where 0 is partitioned in a m-subvector 01 and a (n-m)-subvector 02. This implies that 
any o, with ~ not equal to zero and o2 equal to zero, does not belong to P ,  and 
therefore that V , the image of the open set U ,  is not an open neighbourhood of the 
origin. The result then follows from a necessary condition for the existence of smooth 

stabilizing feedback(see Brockett [8]). • 

Remarks: 
-It must be noted that this proof is not based on the nonholonomy of the constraints and 
Lemma 2 holds therefore also for holonomic systems. 
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-Stabilization of non holonomic systems can however be achieved by open loop control, 
by non smooth state feedback control (see an example in Bloch and McClarnroeh[12]),0r 
by using smooth state-feedback control depending explicitly on time, i.e. of the form 
w(q,t). Samson ([13]) proposes such a control ensuring the stability of the closed-loop, 
in the case of a mobile wheeled robot. 
-However, as shown in the next theorem, there exists a smooth pure state-feedback 
control which can globally marginally stabilize the closed loop at the origin. 

Theorem 1. With the smooth feedback control law: 

w(q) = - ST(q)q 

the equilibrium point q = 0 of the closed loop system (4) is globally marginally stable. 
Precisely : 

a) the state q(0 is bounded as follows for all t : 11 q(0 II < II q(0) II 
b) the state q(O converges to the invariant set U: 

U - ( q ] ST(q)q = 0 } 

Proof. Straightforward by considering the Lyapunov function candidate V(q) = ql"q 
whose time derivative along the closed loop trajectories is: 

~1 = -  2 qTS(q)ST(q)q 

Comment. We notice that: 

rank [ ~q  {ST(q)q}Jq=0= n - m  

This implies that, at least locally around the origin, the invariant set defined in the 
statement of Theorem 1 is an m - dimensional manifold. 

4. THE DYNAMICAL STATE-SPACE MODEL / CONTROLLABILITY 
AND FEEDBACK STABILIZATION. 

In Section 3, the kinematic state-space model has been advocated to analyse the 
controllability of nonholonomic systems. It is however worth noting that this model does 
not provide a full description of the dynamics of mechanical systems. The variables w 
considered as inputs in this model are actually internal states which are dynamically 
related to the physical inputs that is to the generalized forces and torques applied to the 
system by the actuators. Our purpose in this section is to examine the controllability 
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properties of the dynamical state-space model of nonholonomJc systems and to discuss its 
state feedback stabilization. 

Using the Lagrange formalism, the dynamics of  a mechanical system are described by the 
following differential equations: 

dt \ ~1 ) - ~ "  = A(q)~. + B(q)u (5) 

with the following notations and definitions: 

a) L(q, el) = T(q, ¢1) - W(q) is the Lagrangian of the system with T(q, q) the kinetic 
energy and W(q) the potential energy. 

b) B(q)u is the set of generalized forces applied to the system with B(q) a (n x p) 
kinematic matrix and u the p-vector of external forces and torques applied to the system 
by the actuators. 

e) A(q) is the matrix associated to the constraints (see Section 2); ~. is the m-vector of 
Lagrange multipliers. 

The n-dimensional vector function A(q)~. is the vector of the generalized forces acting on 
the system in order to satisfy the constraints. These forces are said "ideal" which means 
that their potential power is zero for any potential velocity field compatible with the 
constraints. 

The kinetic energy T(q, el) is defined as: 
1 (~TM(q) q T(q, cl) = ~" 

where M(q) is the (n x n) definite positive symmetric inertia matrix. We define also the 
matrix C(q,q) and the vector g(q) as follows: 

dM(q) 1 ~q,[ qTM(q) ] 
C(q, q) - dt 2 

8W(q) g(q) - ~q 

With these definitions, the model (5) is rewritten as follows: 

M(q)~ + C(q, cl)q + g(q) = AT(q) ~, + B(q)u 

This equation, together with the constraints (1) written in matrix form as: 

(6) 
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AT(q)q = 0 (7) 

provide a full description of the dynamics of the nonholonomic system. 

We note that the following equality is a consequence of the definitions of section 1: 

ST(q)A(q) = 0 Vq e n 

Using this expression, we eliminate the Lagrange multipliers by premultiplying equation 
(6) by ST(q) to obtain: 

ST(q)[M(q)ci + C(q, cl)q + g(q)] = ST(q)B(q) u (8) 

Moreover, the constraints (7) imply the existence of  a vector time function 11( q,/l) 
smooth in q and linear in Cl which satisfies the following equality along the trajectories of 
the system: 

~I = S(q)'q(q, 4) (9) 

This is precisely the kinematic state-space model introduced in the previous section which 
appears now as a part of the system dynamics. 

By differentiating (9), one obtains: 

/~ = S(q)Y1 + R(q,/l)TI (10) 

dS(q) ~E~ 00-~-- [S (q)]/li 
R (q , / l ) -  dt = i= l  qi 

with: 

Substituting (9) and (10) into (6) then leads to the following alternative state space 
description of the system: 

Z(q)q = ST(q){ -- [M(q)R(q,S(q)rl)r i + C(q,S(q)TI)S(q)T I + g(q)] + B(q)u} (1I.a) 

cl = S(q~q (11.b) 

where Z(q) = ST(q)M(q)S(q) is a definite positive symmetric matrix. The state vector {rl, 
q} of this model, referred to as "the dynamical state-space model" of the system, has 
dimension (2n - m). It shows clearly that r i is an internal state instead of being regarded 
as a fictitious input function w(t) in the kinematical model. 
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As a first step towards the analysis of the controllability of this system, we have thc 
following property. 

Lemma 3. I f p  > n - m (recall that p is the number of inputs) and if ST(q)B(q) has full 
rank for aU q in f~, the dynamical state-space model (11) is partially feedback linearizablc 
with a control law uffl,q) chosen such that: 

ST(q)B(q)u = Z(q)v + ST(q)[M(q)R(q,S(q~q)q + C(q,S(q~q)S(q)q + g(q)] (12) 

where v denotes an (n-m) - dimensional external input. Indeed, with such a control law, 
the dosed loop is written: 

fl = v (13.a) 

Cl = S(q)rl (13.b) 

Thus it appears that the static state feedback (12) allows to reduce the system (11) to the 
simple form (13) whose structure only depends on the nonholonomic constraints. Our 
concern is now to discuss the controllability properties of this model and the design of a 
second state feedback loop v(TI,q) to stabilize the system around the origin. 

4.1. Controllability. 

Due to the presence of a drift vector field in the model, the controllability of the system 
(13) cannot be analyzed without an explicit knowledge of the matrix S(q). However, we 
know that a necessary controllability condition is that the strong accessibility rank of the 
system be equal to the state dimension (2n - m). As a matter of fact, this condition holds 
for nonholonomic systems whatever the structure of S(q) as is shown in the following 
theorem. 

Theorem 2. The strong accessibility rank of a nonholonomic system evolving in an n- 
dimensional configuration manifold and subjected to m constraints is (2n - m). 

Proof. 

Results dixecfly from the fact that, i ra  system is strongly accessible from an input, then it 
is also strongly accessible from the derivative of  this inpuL 

@ 
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4.2. State feedback control. 

In this section, we are concerned with the design of  smooth state feedback stabilizing 
controls for  the dynamical state space model (13). When a smooth state feedback control 
law v(rl, q), such that v( 0. 0) = 0, is applied to the system ( t3) ,  the closed loop 
dynamics : 

1~! = v(11, q) (16.a) 
~i = S(q>q (16.b) 

have the origin (11, cO = (0, 0) as an equilibrium point. 

We have properties quite similar to those that have bccn cmphasized for the kinematic 

state-space model, namely that the equilibrium (11, q) = (0, 0) of the closed loop cannot 

bc made asymptotically stable by pure state feedback, but can be marginally stabilized. 

Lemma 4. The equilibrium point (rl, CO = (0, 0) of the closed loop (16) cannot be made 

asymptotically stable by a smooth state feedback v(TI, q). 

Proof. Similar to that of  Lemma 2. • 

T h e o r e m  3. With the smooth state feedback control law: 

v(rl, q) = - ST(q)S(q)q - D(rl, q)q - A[ST(q)q + rl] - sT(q)q (17) 

where: 
d 

D(~, q) - ~t ST(q) 

the equilibrium point (11, q) = (0, 0) of  the closed loop system (16)-(17) is Lagrange 
stable. Precisely: 

a) the state 11(0, q(t) is bounded for all t 

b) the state 11(0, q(0 converges to the invariant set U: 

U = { (11, CO [ 11 = 0 and sr(q)q = 0 } 

Proof. We define 

TI ----" -- ST(q)q - 11 

The closed loop (16)-(17) is then easily shown to be equivalent to: 

~1 = - D(11, q)q - ST(q)S(q)11 - v(11, q) = - All + ST(q)q 

~1 = - S(q)ST(q)q - S(q)rl 

(18.a) 

(18.b) 
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The theorem follows by considering the following Lyapunov function candidate: 
1 V(fl, q) = ~" if]if] + qTq] 

whose time derivative along the solutions of (18) is given by: 
l "v' = - ~- flT(A + Ar)fl - qTS(q)ST(q)q < 0 

5. CONCLUSIO NS.  

Our main contribution in this paper has been to show that non holonomic systems: (i) are 
strongly accessible whatever the structure of the constraints; (ii) cannot be asymptotically 
stabilized by a smooth pure state feedback; (iii) can nevertheless be globally marginally 
stabilized by a smooth state feedback. Furthermore the design of these stabilizing controls 
has been explicited. 

An application of  the foregoing theory to mobile wheeled robots can be found in 
reference [11]. A brief sketch of this application is given in Appendix as a matter of  
illustration. 
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APPENDIX: Simplified model of a mobile wheeled robot. 

We consider a mobile robot moving on an horizontal plane, constituted by a rigid troliey 

equipped with non deformable wheels. During the motion, the plane of cach wheel 

rcmaias vcrtical and the whccl rotates around its (horizontal) axis. The orientation of 2 

wheels with respect to the trolley is fLxed, while the orientation of the third wheel is 
varying (see Figure 1). The contact between the wheels and the ground satisfied the pure 
roiling and non slipping conditions. The motion of the robot is achieved by 2 motors 
which provide torques acting on the rotation of the 2 wheels whose orientation is f'Lxcd. 

In order to characterize the position of the trolley, we dcfine an inertial reference frame in 
the plane of motion {0, I1 ,I 2}, a reference point Q on the trolley and a basis {xt, x2 } 
auachcd to the trolley. The position of the trolley in the plane is therefore characterized by 
3 variables: 

- x, y : the coordinates of the reference point Q in the inertial frame, 

-0: the orientation of the basis {xl, x2 } with respect to the inertial frame. 

~Z 
Y'z 

o I 
3L 

1"! 

Figure 1: Mobile robot configuration 
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The configuration of the robot is described by 7 variables : ( x, y, 0 ) for the position of 
the trolley, 3 angles characterizing the rotations of the 3 wheels, and 1 angle describing 
the orientation of the mobile wheel. A complete description can be found in [11]. In the 
present simpfified illustrative analysis we restrict ourself in describing the motion of the 
robot in the plane and we define therefore the generalized coordinates vector q as: 

q = ( x  y 0 )  T 

There is one constraint involving the time dervative ofq  only. namely the non slipping 
condition of the axis of the 2 front wheels. This constraint is written as: 

x cosO + y sinO = 0 

The matix A(q) is therefore defined as follows: 

X(q) =ffcosO) 

LTJ 
A particular choice for S(c0 is the following: 

The Lie brackett of the vector fields associated with the colums of S(q) is computed as: 

. To. 01 

Since this new vector field does not belong m the distribution represented by S(q), w, 
conclude that the system is nonholonomic. 



123 

A1. Kinematic  model.  

According to Eq.(4) the kinematic model is written as follows: 

i = - w l  sin0 y= W 1 COS0 brow 
The 2 inputs w I and w 2 have a physical interpretation: they are respectively the velocity 
of the robot in the x 2 direction and its angular velocity. 

The state feedback control of Theorem 1 is given by: 

w I = x sin0 - y cos0 

w 2 = - 0  

and the invariant set U is deserit~.d by: 

- x  sin0 + y cos0 = 0 

0 = 0  

or, equivalently by: 

y = 0 = 0  

A2. Dynamical  model 

Neglecting the masses and inertias of the wheels, the kinetic energy reduces to: 

I /: 1[ 1 
T(q ,q )=~ ' (x  ~, 6) f m  0 0 x 

mO i 

0 Io (~ 

where m is the mass of the robot, and Io is its inertia moment around the vertical axis at 
point Q. 

We consider now as inputs (ul, u2)the torques provided by the 2 motors. The 
corresponding generalized forces are given by : 

1 [ -s in0 -s in0 "~ B(q) u = ~" 

con0 cos0 

- L  

/ ul} 
U2 
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where R is the radius of the wheels and 2L the length of the axis of the front wheels. 

Equation (6) takes the following form: 

I 
m x = ~ cosO -~- (u l+  u 2) sine 

1 m y = ~, sine + ~ ( u l +  u2) cosO 
L 1oi~ = R-(nl -u2) 

According to Eq.(9) we dcfmc 11 by: 

111 = -x sine + y cos9 

02 =0 

After elimination of the Lagrangc multiplier ~., we obtain the following dynamical model 

of the robot: 
- 1 

mrll = ~ (ul + u2) 

L 
Io ~2 = ~" (ul - u2) 

x = -1"11 sine 

)' = ~11 cosO 

=TI2 

The following static state feedback allows to reduce these equations to the form of 
Eq.(13): 

R ( m v l +  ~---° v2) tll m ~= 

R (m I° 

The stabilizing state feedback control (17) takes the following form: 

v I = - (  1 + kl) (fix + x sine + y cose) +r12 (x cosO+ y sine) 

v 2 = -(I + k 2) (e + 112) 

where the gains kl and k 2 arc non negative design parameters. 

This choice of v, combined with the first state feedback, ensures the convergence of the 

closed-loop to the invariant set characterized by rl = 0, y = 0 and O = 0. 


