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Abstract 

The identification problem of biotechnological pro
cesses is threefold: (i) determination of the number of 
biological reactions, (ii) identification of the underlying 
reaction network, (iii) identification of the kinetics. In 
most practical cases , these three parts of the identifi
cation problem can be completely decoupled from one 
another. 

1 Introduction 

The identification of mathematical models for biological pro
cesses in stirred tank reactors is known to be one of the major 
bottlenecks for the application of modern control science in 
biotechnology. 

Biological models usually involve two kinds of parameters: 
the yield coefficients which rely on the structure of the underly
ing reaction network and the kinetic coefficients which rely on 
the structure of the kinetics. 

In most modelling studies, however, the difference of nature 
between these two kinds of parameters is not taken into account 
and the set of both yield and kinetic coefficients is treated as 
a whole in the identification exercise , often leading to intricate 
identifiability difficulti es . 

It has been recently shown by several authors ([3]. [2]. [5], 
[6]) how to implement a two-step procedure for identifying sepa
rately the reaction structure and the kinetic structure for a gen
eral class of dynamical models of bioprocesses. In the present 
paper, we intend to give a tutorial presentation of this two-step 
approach and to analyse some of its main features. 

The suggested identification procedure is actually based on 
a state transformation which allows to reformulate the dynam
ical model into separate submodels. 

The first submodel only depends on the reaction struc
ture and is independent of the kinetics. It can be linearly 
reparametrized and used for the identification of the yield coef
ficients by means of linear regression. The identifiability prop
erties of this sub model are analyzed in [3) and [6). 

Once the reaction structure and the yield coefficients are 
known , the second sub model is used for the identification of 
the kinetic structure . This submodel is in a form which enables 
to decouple completely the kinetic functions from one another. 
This means that each biological reaction occuring in the reactor 
can be treated separately as if it was the only one, although all 
the involved reactions obviously take place simultaneously. 

We begin with a preliminary example. 
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2 A preliminary example. 

Consider the growth of a population of microorganisms on a 
single limiting substrate in a stirred tank in batch mode. The 
growth of the biomass is accompanied by the formation of a 
product of interst. This growth reaction IS described by the 
following scheme: 

(I) 

where S, X, P denote respectively the limiting substrate , the 
biomass and the product, while k1 and k2 are two yield coeffi
cients which are usually expressed as units of mass per units of 
mass in biological systems. This reaction thus means that the 
consumption of kl mass units of substrate is necessary to form 
I unit of biomass and k2 units of product. The name "yield" 
adopted here instead of "stoichiometric" emphasizes the fact 
that in biological systems, these coefficients are in general ex
pressed in units of mass instead of number of moles for purely 

chemical systems. To simplify the notations , we assume that 
X, S, P also denote the concentrations of the related species 
in the reactor. According to the scheme (I) and since we are 
in here a batch reactor , the conversion rate of substrate into 
biomass and product can then be expressed as : 

dS 
dt 

dP 

dt 

From these equations, kl and k2 can be expressd as : 

k1 
So - St 
X t -Xo 

k2 
Pt - Po 

X t -Xo 

(2) 

(3) 

( 4) 

(5) 

for all t > 0, where the subscripts 0 and t denote, respectively, 
the initial value and the value at time t of each species. In 
consequence, if measurements of X, Sand P are available, k1 
and k2 can be identified by linear regression using relationships 
(4) and (5). 

Assume now that the conversion rate is modelled by Michaili, 
Menten kinetics of the form: 

r(S X) £ iJrnaxSX 
, Km+S 

(6) 

where iJl1l&X (the maximum growth rate) and Km (the Michaelis 
constant) are two kinetic coefficients. 

It follows that, the process dynamics can now be written in 
the form: 

dX 

dt 
dS 
dt 

r(S, X) (7) 

(8) 



dP 
dt 

(9) 

with reS, X) given by (6). This is called a state-space model in 
the terminology of system theory. Then, by integrating (8), we 
obtain the following linear equation in I'max and Km . 

it is clear that the two coefficients I'm.x and Km can also be 
identified by linear regression from the above equation as long 
as measurements of S and X are available. 

Comment 2 .1. With this preliminary example, we see 
that, whenever measurements of X, S, P are available (i.e. lull
state measurement) , we can perform the parameter identifica
tion in two separate and successive steps: first the identifica
tion of the yield coefficients kl and k2 (which rely on the reac
tion scheme (I)) independently of any knowledge or assumption 
regarding the kinetics ; second the identification of the kinetic 
coefficients I'max and Km (which rely on the structure of the 
reaction rate model (6)). 

The generalization of this two-step identification method to 
complex biotechnological systems is not straightforward. The 
difficulty is that, whenever more than one reaction is involved 
in the system, there is no longer equivalence between the yield 
coefficients and the yield of the process. Morever , when the 
system is not in batch mode nor in steady s~ate, the transport 
dynamics also have to be taken into account. 

3 Reaction Networks 

A bioprocess in a stirred tank reactor is described by a set of m 
coupled microbiological and biochemical reactions which take 
place simultaneously in the reactor and which involve a set of n 

biological species such as microorganisms, substrates, metabo
lites, enzymes ... The n components are denoted: Xl , X 2, ... , X, 

The reaction network is then a set of biological reactions of 
the form: 

kl"jXI + k2j X 2 + ... + k;;jXn ---> k{jXI 

+ktX2 + ... + k:jXn j = I , m (10) 

where kij and kt; are the yield coefficients of the i,h component 

in the j'h reaction. 

A substmte or reactant is a component which appears in the 
left-hand side of a reaction with a non-zero yield coefficient kij. 

A product is a component which appears in the right-hand 
side of a reaction with a non-zero yield coefficient kt;. 

A catalyst (usually an enzyme in biotechnology) is a com
ponent which appears on both sides of the same reaction with 
identical non-zero yield coefficients kij = kt; . 

Obviously the same component can be a product of a reac
tion and a substrate of another one (see the examples below). 
It is clear also that, without loss of generality, the yield co
efficients can always be normalised in such a way that one of 
the non-zero yield coefficients is exactly equal to " I " in each 
reaction. The corresponding component is then called the nor
malising component of the related reaction. 

Definition 3.1. The characteristic matrix K ~ [kij) of a 
biological process described by a reaction network of the form 
(10) is the (n x m)-dimensional matrix with entries kij ~ kt; -

kij (i = I , n;j = I,m) • 

Example 3 .2. Competitive growth of a single popu
lation on two limiting substrates. We consider the example 
of a process in which a population of microorganisms can grow 
on two different secondary substrates produced by the hydrol
ysis of a primary complex organic substrate. The process is 
described by the following reaction network with m = 3 reac
tion and n = 7 species (components): 
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Hydrolysis: 

Growth I 

Growth 2 : 

k3S2 + k40 ---> X + ksP 

k6S3 + ksO ---> X + k7E + k9P 

(11 ) 

( 12) 

( 13) 

with SI representing a primary substrate, S2 and S3 the sec
ondary substrates, E enzyme, 0 dissolved oxygen, X biomass 
and P carbon dioxyde. Assuming that the components are or
dered as follows: SI, S2, S3, E, X, 0, P, the characteristic ma
trix is written: 

-kl 0 0 
I -k3 0 

k2 0 -k6 
K= 0 0 k7 (14) 

0 I 
0 -k4 -ks 
0 ks k9 

The normalizing components are S2 for the first reaction and X 
for the second and the third ones. This normalization induces 
the "structural" presence of " I" in each column of the matrix 
K. • 

4 Reaction Kinetics 

Let us now assume that a biological process , described by a 
reaction network of the form (10), takes place in a stirred tank 
bioreactor. The reaction kinetics (or reaction rate or conver
sion mtes, see Section 2 for a simple example) are simply the 
rates at which the reactions proceed , that is the rates of sub
strate consumption and product formation in the tank. We 
thus assume that reaction kinetics denoted rj(t) (j = I, m; 
units of mass/unit of time) are associated with the reactions of 
the network. 

It is a well established fact that these reaction kinetics are 
affected by the concentrations of the biological components in 
the bioreactor. Therefore they are generally represented by 
non-negative rational functions of the concentrations as : 

where (by a slight abuse of language) XI , X2, . . , Xn now de
note the concentrations of the components in the liquid phase of 
the reactor. As usual , the argument "t" (time) will be omitted 
in the sequel. 

In a vast majority of applications, the kinetic model take a 
multiplicative form: 

(15) 

where 1'; is a nominal (or specific) rate constant while the terms 
Pij(Xi) separately represent the effect of each component Xi on 
the rate rj. The form given to the functions Pij(X;j depends 
on the way the j'h reaction is affected by the component con
centration Xi. One has basically three situations: 

1. The rate rj is not affected by Xi. This is trivially repre
sented by : Pij(Xi) = 1. 

2. The rate rj is positively affected by Xi in the sense that 
an increase of Xi enhances the reaction rate as shown in 
fig. 1. In such a case, Xi is called an activator of the 
reaction. This is mathematically represented by selecting 
a monotonic positive increasing function for Pij(Xi) 

p(X) > 0 8Pij(Xi) > 0 8
2
pij(Xi) < 0 

') '- 8X i 8Xl 
3. The rate rj is negatively affected by Xi in the sense that 

an increase of Xi slackens the reaction rate as shown in 
fig.2. In such a case, Xi is called an inhibitor of the 
reaction. This is mathematically represented by selecting 
a monotonic positive decreasing function for Pij(Xi) : 



As a matter of fact, these three situations can be described by 
the same elementary kinetic function taking the form of the 
following first order rational fraction: 

(16) 

This function involves four positive constant coefficients "'ij, {Jij, lij, Oij 

that we call kinetic coefficients. It is easily verified (see fig. I 
and 2) that: 

Pij(O) 
(Xij 

lij 

Pij(OO) 
{Jij 

Oij 

--------

~ ______________________ ~Xi 

Fig.1. Elementary rate function for an activator 

L-______________________________ ~ x, 

Fig.2. Elementary rate function for an inhibitor 

It appears clearly that this model (16) represents the kinet

ics of an activator when ~ > ~. and of an inhibitor when 
0 IJ 'Y'J 

As for the yield coefficients , the kinetic coefficients can also 
be normalized in such a way that either "'ij or {Jij and either 
lij or Oi, is taken equal to "I " in each elementary kinetic func
tion. Moreover , by setting some of the other (un normalised) 
coefficients to zero , we can obtain various interesting special 
cases which are commonly used in modelling of bioprocesses, 

as shown in the following table. 

Model crij (Jij 'Yij Oij 

Linear Xi 0 I I 0 

Michaelis Menten K:+X, 0 I KM 
Hyperbolic inhibition K;<.fX. 0 I Kpl 

Finally, we note that when a particular component has to 
be considered as an activator at low concentrations and as an 
inhibitor at high concentrations, this is easily achieved by com
bining two normalized elementary kinetic function of the form 
(16) as follows (see Fig.3) : 
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Pij(Xi) = ("'ij+Xi) (I + (JijXi) 
lij + Xi 1+ OijXi 

and {Jij < I 
Oij 

", .. 
with ....!L < I 

lij 

(17) 

The particular case of Haldane kinetics correspond to the spe
cial case: "'ij = 0, (Jij = 0, lij > 0, Oij > 0 

L-________________________________ ~Xi 

Fig.3 Rate function with activation at low concentrations 
and inhibition at high concentrations. 

Example 4 .1. Consider again the preliminary example of 
Section 2 where the growth is modelled by Michaelis-Menten 
kinetics (6). With the formalism just introduced , we have the 
following equivalence: 

with 

"'I + {JIS 

I1 + OIS 

"'2 + {J2 X 

12 + 02 X 

"'I = 0 {JI = I I1 = KM 01 = I 

• 
The overall structure of the kinetics of a bioprocess can be 

summarized in a table of influences . This table is an array of 
dimensions n x m where the entry (i , j) is marked by one of the 
following symbols : 

"Q') if the reaction rate rj is not affected by Xi 
"+" if Xi is an activator of the j'h reaction 

if Xi is an inhibitor of the j'h reaction 
"±" if Xi is an activator at low concentrations and an inhi 

at high concentrations. 

Example 4.2. Consider a bioprocess made up of two sim
ple reactions : 

Growth : kl S ----> X 

Enzymatic production k2S ----> P 

Obviously, in accordance with the principle of mass action , 
we have to assume that the substrate S is an activator of bot.h 
reactions and that the biomass X is an activator of its own 
production. Furthermore, we suppose that the substrate S be
comes inhibitor of the enzymatic production at high concen
trations while the product P inhibits the growth. On the basis 
of these modelling assumptions , we have the following table of 
influences. 

1'1 r2 

S + ± 
X + + 
P 0 -



5 The general dynamical model of bio
processes in stirred tank reactors 

In this section, we briefly recall the general dynamical model 
of biological reactors as described in [1). The reactions which 

occur in the reactor are supposed to be encoded into a reaction 
network of the form (10). The model expresses the mass bal
ance of the various components inside the reactor. The vector 
of the component concentrations is called the composition of 
the reactor and is the state of the model. It is denoted: 

The vector of the reaction kinetics is denoted : 

With these notations, the mass balance dynamics of the pro
cess components in a stirred tank reactor are described by the 
following nonlinear state space model (see [I), Chapter I, for 
further details) : 

de 
Yt=Kr(e)+u ( 18) 

The first term Kr(e ) represents the biological and biochemical 
conversions in the reactor (per unit of volume) according to the 
underlying reaction network (K is the characteristic matrix of 
the network as introduced by Definition 3.1.) . The second term 
u = (UI, U2, ... , unf represents the net balance between the 
supply feed rates, the withdrawal rates and the dilution of the 
components per unit of volume. 

A simple example has been given in Section 2, equations 
(7) - (9). Here is another example . 

Example 5.1. Competitive growth of a single popu
lation on two limiting substrates (continued). The reaction 
network of the system is given by (11 H 13). Assume now that 
the process takes place in a fed-batch aerated bioreactor sup
plied with the primary substrates SI' The general dynamical 
model for this example is written as: 

SI -kl 0 0 
S2 I -k3 0 

d S3 k2 0 -k6 CI(~) ) 
dt 

E 0 0 k7 r2(~) 
X 0 I r3(~) 
0 0 -k4 -ks 
P 0 ks k9 

-DSI + FinV- 1 

-DS2 
-DS3 

+ -DE 
-DX 

-DO + QoV- 1 

-DP+QpV- 1 

where D represents the dilution rate, V the volume of the liquid 
phase in the reactor, Fin the primary substrate mass feeding 
rate , Qo the oxygen transfer rate , Qp the gazeous C02 outflow 
rate. 

6 Statement of the identification prob
lem 

We assume that: 

• A I The components involved In the system are known 
and measurable. 

• A2 An experiment where all the state variables ~i and all 
the "exogeneous" signals Ui have been measured (possibly 
through off-line laboratory analyses) with a reasonable 
sampling frequency is available . 
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The identification problem is then threefold: 

I. Determination of the number of reactions involved in the 
process 

2. Identification of the reaction network: determination of 
the structure of the reaction network and estimation of 
the un normalized nonzero coefficients of the characteristic 
matrix K. 

3. Identification of the kinetics: determination of the struc
ture of the kinetics and estimation of the unnormalized 
non zero kinetic coefficients. 

These determinations have to be performed from the data col
lected during the available experiment (Assumption A2) 

As a matter offact, in most practical cases, these three parts 
of the identification problem can be completely decoupled from 
one another, as we shall now show in the sequel of the paper. 

7 Determination of the number of reac
tions 

It is an evidence that the general dynamical model (18) for bi
ological processes will be identifiable only if the reactions that 
are supposed to occur in the bioreactor are distinguishable from 
the data. A lack of distinguishability may appear for two struc
turally different reasons: either because the characteristic ma
trix K has not full rank or because the reaction kinetics are not 
independent. We illustrate the issue with two simple examples. 

Example 7.1 As in Example 4.2, we consider the case of a 
simple microbial growth process with an associated formation 
of a product of interest . We assume that the product formation 
is decoupled from the growth , as represented by the following 
scheme with two reactions: 

The dynamical model is written as : 

(19) 

(20) 

Let us now suppose that the decoupling between growth and 
production is in fact an erroneous assumption and that the reac
tion rates rl(e) and r2(e) are not independent but proportional 
to one another: 

Then , by introducing another reaction rate f(e) defined as : 

and after a few calculations, it is easily shown that the model 
(21) is equivalent to : 

with k; £ kI/(1 + 0') and k; £ k20'/(1 + 0'). This model itself 
is associated with the following scheme: 

S - k;X + k;P (22) 

It is thus clear that the two reactions (19) and (20) are not 
distinguishable (in the sense that the proportionnality constant 
0' is not identifiable). • 

Example 7.2 Let us now consider the following scheme 
involving 3 reactions with 4 components : 

(23) 

(24) 

(25) 



The corresponding dynamical model is written: 

We observe that the characteristic matrix K has not full rank 
rank (K) = 2. Therefore, by introducing the following new 

reactions rates: 

fl (e) rl (e) + rz(e) 

fz(e) rz(e) + r3(e) 

it is easily shown that the model (26) is equivalent to : 

which corresponds to the following reaction scheme: 

Again, it is clear that the three reactions (23) (24) (25) are not 
distinguishable. • 

These examples lead to the following definitions. 

Definition 7.3. Independent kinetics. The kinetics are 
independent if and only if the vector space generated by the 
reaction rate functions rl (e),rz(e), ... , rm(e) has dimension m. 

Definition 7.4. Independent reactions. The reactions 
are independent if and only if the characteristic matrix K has 
full rank and the kinetics are independent. • 

The above examples have clearly shown that only sets of 
independent reactions are identifiable. The first step in any 
identification should therefore be the determination of the num
ber of independent reaction compatible with the available data. 
This determination can be performed as follows (see [4]). By 
integrating the model equation (18) over an arbitrary time in
terval, we obtain: 

We note that this vector C(t) is calculable at the sampling 
instants from the available data (obviously with an appropriate 
numerical approximation of the integral). The following matrix 
is constructed: 

[ 

(1(10) 

b. (1 (Il) 
A= . 

(l(tN) 

(n(tO) ) 
(n(tl) 

(n(tN) 

where 10,11,"" I j, ... ,IN denote the sampling instants and 
(i(lj) individual components of C. Then the number of in
dependent reactions is simply given by the rank of the matrix 
A which is determined, in practice, by the number of singular 
values of A that are significantly different from zero. A very 
illustrative application of this method in the case of a culture 
of B. sublilis can be found in [5] 

8 Identification of the reaction network 

Let us now assume that the number of independent identifi
able reactions is given. This means that the dimensions n x m 
of the characteristic matrix K are also fixed. We introduce 
the following additional assumption (satisfied in most practical 
appl ;cations) : 

• A3 The number of components n is larger than the num
ber of reactions m. 
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This assumption means that the number of rows n of K is 
larger than the number of columns m of K. 

We define the slructure of the reaction network as follows. 

Definition 8.1. Structure of the reaction network. 
The structure of the reaction network is defined by the location 
of the non-zero entries in the characteristic matrix K. • 

Indeed, this location of non zero entries designates in fact 
the species that are participating in each reaction. 

Under Assumption A3, for each plausible structure, a linear 
state transformation of the initial dynamical model (18) can be 
done to obtain an auxiliary model which is independent of the 
kinetics. Let p be the rank of the n x m characteristic matrix 
K. We define a partition (K.,Kb) such that 

(~:)=EK 
where E is a row permutation elementary matrix and K. is 
a full row rank sub matrix of K, i.e. the dimension of K. is 
p x m and rank (K.) = p. Then by the same permutation, the 
dynamical model (18) can be partitioned into two parts: 

with: (~:) ~ Ee and ( :: ) ~ Eu 

We then consider the following linear state transformation 
of the initial dynamical model (18) : 

z 

(27) 

(28) 

where the (n - p) x m matrix G is the solution of the matrix 
equation 

(29) 

Since K. has full row rank, G is uniquely defined by -KbK: 
with K: being an arbitrary right inverse of K. such that 
K.K: = lp, and lp being an identiy matrix of dimension 
p. The dynamical model (18) is transformed into 

z 

Kr(e., z - Ge.) + u. 

Gu. + u b 

(30) 

(31) 

The second part (31) of this transformed model does not involve 
explicitly the reaction rates and can thus be used to estimate 
the yield coefficient without modelling the reaction kinetics. 
More precisely, the identification of the yield coefficients is per· 
formed as follows. First the elements of the matrix G are iden
tified from the following linear auxiliary model derived from 

(31) and (28): 

z (32) 

(33) 

This identification is carried out in the following way. For each 
tentative value of G, equations (32) and (33) are solved to give 

an estimate of eb denoted eb(G). Then, according to a least 
squares principle, the quadratic criterion: 

tN 

J(G) = L[eb - eb(G)]Z 
t=tD 

is minimized with respect to G. 

Afterwards, the recovering of the yield coefficients for the 
given structure of K is performed by solving equation (29): 

with respect to the k;s. The conditions under which the yield 
coefficients ki are identifiable with this method are explicited 

in [6] and [3] . 



Example 8.2. Competitive growth of a single pop
ulation on two limiting substrates(continued). In this ex
ample, there exist several partitions that can provide different 
auxiliary models. For instance, one can take rows 2, 5 and 4 
for Ka and the remaining rows for Kb : 

0 -k3 

) C" 
0 

-~" ) o k2 0 K = I I ,Kb = 0 a -k4 -ks 
0 k7 0 ks kg 

The value of C is structurally defined by 

klk3 ( " 
-',.,k,' ) 

C = -KbK;' -r -k2 k3 (k2 k3 - k6)kil 

k4 (ks - k4)ki l 

-ks (ks - kg)k;1 

C" 
Cl2 "'] C2J C22 C23 

0 C32 C33 

0 C42 C43 

The induced partitions are 

Define 

(S2,X,Ef , eb = (SI,S3,o,pf 

(-DS2 , -DX2 , -DE) 

(-DSJ + DSJin,-DS3, -DO +QoV- 1 

-DP + QpV-J)T 

m=c(~H~] with t::,. 

The auxiliary model (32)-(33) then takes the following special
ized form: 

which is used to identify the elements of C. Finally, the recov
ering of the yield coefficients is obtained from the structure of 
C as follows: 

k3 =.':!.3., k4 =C32, kS =-C42 
Cll 

k7 = _.':!.3., ks = C32 _ CJ2C23, 

CJ3 CI3 

• 
This method is then applied to each candidate structure of 

the reaction network. The choice between the candidates is 
then finally performed by using the classical validation tech
niques of the System Identification theory. 

9 Identification of the kinetics 

Once the yield coefficients are known , the identification of the 
reaction kinetics can be considered. For each plausible struc
ture of the reaction kinetics (see Section 4) the identification 
consists of estimating the involved kinetic coefficients. We as

sume: 

• A4 The n x m characteristic matrix K has full column 
rank, i.e. rank(K) = m. 
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Under this assumption, we know that there exists a feft inverse 
K+ of K such that K+ K =lm. We define Y = K+ {. The 
dynamics of Y are derived from the initial dynamical model 
(18) as follows: 

d 
di Y = r({) + K+u 

or, element by element: 

d 
diYj=rj({)+(K+u)J ' j=I , ... , rn 

In this way, it appears that each reaction rate is completely 
decoupled from the others: reaction rate rj only intervenes in 
the dynamics of Yj. It is then possible to identifiy the model 
of rj as if it were the only reaction taking place in the system 
, The identification is thus much easier to perform than in the 
case where all the reaction rates are to be identified together. 

Example 9.1. Competitive growth of a single pop
ulation on two limiting substrates (continued). Suppose 
that the three reaction rates of this system are be represented 
by the following equations: 

"1 = l'iESI 

7"2 = 1'2S2X 
where I'i , I'i , I''i and K m are unknown kin etic coefficients. The 
first two reaction rates are derived from the mass action prin
ciple while the third one is a Michaelis-Menten type model in 
S3. We can choose 

( 

-l.k-I 
2 I 

o 
o 

I 0 -~k3kiJ 2" 
0 0 -!kil 
0 0 ~kil 

1k3 0 
1 -1kJkg t::,.-1 
o ~klk5t::,.-1 

k l (k4kg - ksks ) 

We have. 

The dynamics of y = K+e are then given by 

d 
di

YI 

d 
di

YZ 

d 

di Y3 

• Ik-IDS I'IESI - DZI -:1 I Jin 

I 
1';SzX - DZz - :1klt::,.-J(kgQoV-1 + ksQpV- I ) 

I''iS3 X _ DZ _ ~k t::,.-I(k QV-I + k Q V-J) 
f(m + S3 3 2 ISO 4 P 

It appears clearly t.hat the three reaction rates are decoupled. 
The first. two equations are linearly paramet.rized by I'i and 1'2, 
respectively. The third equation has a similar form as equation 
(8) of our preliminary example (see Section 2). 
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