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Abstract. Identification of steady-state distributed systems wi th space
variable parameters is a crucial problem in aquifer hydrology. This problem 
is considered in a mathematical framework familiar to control engineers. 
Assuming a stochastic "random-walk" model for the parameter spatial variabi
lity, an optimal estimator is derived in the I-D case, using a fixed-inter
val smoothing te chnique. An application to a numerical example demonstrates 
the effectiveness of the method. Some generalisations to non linear and 
2-D cases are also discussed and an application to the identification of 
a real underground aquifer in Belgium is briefly reported. 
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INTRODUCTION 

In this paper, we discuss the identification 
problem of a class of distributed systems, 
described by a steady-state (independent of 
time) partial differential equation with space 
variable parameters. 

This problem may seem somewhat academic becau
se identification methods and applications 
are most often developed for dynamic (instead 
of steady-state) distributed systems. Our 
motivation is due to the fact that, in the 
last de cade, the problem of identifying the 
space-variable parameters of steady-state 
groundwater flow systems has received much 
attention as it is a fundamental step in im
plementing aquifer models oriented towards wa
ter supply management and control (see e.g 
Emse llem and de Mars ily, 1971; Neuman, 19 7S; 
Cooley, 1977; Bastin and Gevers, 1977; Carote
nuto, Raiconi and Di Pillo, 1978; Bastin, 1979; 
Neuman and Yakowitz, 1979). 

The goa l of the paper is twofold 

i) Set the problem in a mathematical frame
work familiar to control engineers. 

ii)Suggest how the method might be used in 
solving distributed systems identification 
problems in other disciplines than hydro
geology. 

PROBLEM STATEME~T 

We consider a one-dimensional (I-D) distri
buted system described by the following 
partial differential equation 

183 

a { __ I __ ay } + q(x) = 0 
ax a (x) ax 

with the boundary condition 

1 ~(t;) = Q 
a(t;) ax 

( I) 

(2) 

a(x) is a space variable parameter, y(x) and 
q(x) are respectively the state and the in
put of the system. 

The identification problem (generally called 
"inverse problem") is the problem of finding 
the oarameter function a (x) when y(x) and 
q(x) are given. 
If (1) is integrated between 0 and ~ subject 
to the condition (2) the following expression 
is obtained : 

_ ay ~ 1 a(x) - a;z {Q + fo q(x)dx }- (3) 

Clearly, if Q is known, the problem has a 
unique well defined solution a (x). But if Q 
is unknown (which is actually the case in 
most practical situations), the problem is 
said to be "ill posed" because it has an 
infinity of equivalent admissible solutions, 
all of which satisfy the system equation (I). 
Futhermore, even if Q is given, one must 
overcome another source of difficulty if one 
assumes that the function y(x) is not exactly 
known but is corrupted by a measurement 
noise w(x) : 

z(x) = y(x) + w(x) (4) 
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If we introduce the noise-corrupted function 
z(x) directly into (3), we obtain an inexact 
expression for the solution of the inverse 
problem : 

c/(x) ~ {Q + J~q(x)dx } - l 
3x x 

(5) 

The error of estimating a (x) by a*(x) is then 

,., 
; dW {Q + J ~q(x)dx } -l a (x) - a (x) (6) 3x x 

This error is thus proportional to the deriva
tive of the noise ( 3w/ 3x) which can be arbitra
ry large even if the noise w(x) itself is 
small. The estimate a*(x) exhibits unplausible 
large amplitude oscillations and is said 
"unstable" (Neuman and Yakowitz, 1979). 

The procedure followed in this paper in order 
to overcome both of these difficulties (non
uniqueness when Q is unknown and instability 
in the presence of noise w(x) ) is to incor
porate, into the mathematical statement of 
the identification, an additional "random 
walk" model for the spatial variability of 
the parameter a (x). This model is similar 
to those which are often used in identifica
tion of time varying parameters (Norton, 1975; 
Bohlin, 1976). 

AN EQUIVALENT DISCRETE MODEL 

In practical applications (as in aquifer hy
drology) the data z(x) and q(x) are not given 
in analytical form but are measured at a fi
nite number of discrete points in the inter
val (O, ~ ). On the other hand, the implementa
tion of any identification method on a digital 
computer necessarily requires some kind of 
discretization. For both these reasons, it is 
convenient to formulate the identification 
method directly for a discrete equivalent mo
del which is now presented. The system is 
discretized at (n+2) nodes in (O, ~ ) 

~~-
n+1 

k;O, ... ,n+1 (7) 

Then equations (1),(2) and (4) are approxima
ted by finite differences as follows 

(Yk+I-Yk) - (Yk-Yk-I) + qk ; 0 (8a) 
ak 

a
k

_
1 

a (Yn+I-Yn) Q (8b) 
n 

zk ; Yk + w
k 

(8c) 

Eq. (8a) holds for k;I, ... ,n-1 and eq.(8c) 
for k;O, ... ,n+l. Define the auxiliary discre
te function Pk 

n 

L 
i;k+1 

q. 
~ 

p ;0 
n 

Then (8a) and (8b) can be combined as 

(9) 

k;O, ... ,n 

IDENTIFICATION OF A STOCHASTIC 
PARAMETER MODEL 

( 10) 

The spatial variability of the parameter a (x) 
is expressed as : 

ak+1 ; ak + Ek+1 k;0, ... ,n-1 ( I I) 

in which Ek+1 denotes the change of a (x) from 
xk to xk+I.The system (10),(II),(8c) can then 
be viewed as a second order discrete linear 
dynamic system with state (Yk, ak), output zk 
stochastic input Ek and stochastic observation 
noise wk. 

I"e assume that: 

(i) Q is known (well-posed inverse problem) 
( i i) W; (wO' ... , w n + 1 )' and E. ; ( El' ... , En) , 

are zero-mean gaussian random sequences 
with covariances : 

R ; E (WW' ) C (12) 

Consider the parameter vector: 

( 13) 

From the system equations, t and W can clearly 
be taken as linear functions of e 

t.; pe and Z-Ae ( 14) 

where Z is the measurement vector and Y the 
state vector : 

It is a well known result that the optimal 
maximum a posteriori (MAP) estimator ~ is the 
value of e that maximizes the unconditional 
density f(E,W) subject to the constraints (17) 
or equivalently that minimizes the perfor
mance index : 

( 15) 

This estimator ~s 

( 16) 

It has the following properties : 

(i) e is unbiased: E(6) ; E( 8) (17) 
(ii) The error covariance matrix ~s 

Ie ; E{ (8-8)( 8-B)' } ; (P'C-1p+A'R-IA)-1 

( 18) 
(iii) In the case of perfect observations 

the estimate a coincide with the 
unique exact solution a'" of the inverse 
problem. 

1) is the solution of a typical "fixed-inter
val smoothing problem". Expression (16), 
which requires the inversion of a large 
matrix, is not the best from a numerical 
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viewpoint: recursive fixed-interval smoothing 
as presented by Anderson and Moore ( 1979) is 
certainly more efficient. However this ap
proach is adopted here because the generali
sation is straightforward when Q is unknown 
and also for 2-D distributed systems as we 
shall see later in the paper. 

WHITE INPUT AND NO ISE SEQUENCES 

Assume that W and ~ are stationary white 
sequences and denotes 

From (14) and (16), the performance index can 
also be written : 

J( 8 ,Y) I 
= (J7 J

E 
(8) I 

+ (j7 J w( 8 ,Y) (18) 
E w n 

with J ( 8) L (a . - a . I) 2 ( I 9) 
E i=1 

~ ~-

n+1 
J w(8 ,Y) = L (z. _ y.) 2 (20) 

i=O 
~ ~ 

The identification may lhen b~ restated as : 
find optimal estimates e and Y that minimize 
J(9,Y) under the constraint Y=A6. 
The criterion J E is clearly a "smoothing" 
criterion whi ch will, hopefully, reduce the 
undesirable oscillations of the solution of 
the inverse problem while J w is a "calibra
tion" criterion on the state of the system. 

A NUMERICAL EXAMPLE 

We assume ~ =I. n=49 Q=0.05 
qk=O.OOI for all k 

~ and Ware white gaussian sequences produced 
by pseudo-random number generators with stan
dard deviations 

0 2 = 1.0 
E 

0 2 = \. 0 
w 

The system equations (8c),(10),(II) are solved 
with initial conditions Yo=O.O and a =4.0 

. 0 
F~g.1 shows the state Yk and the perturbed 
output zk' The true parameter ak being esti
mated is represented on fi g.2 and fig.3 (note 
the difference in the vertical scales). Fig.2 
also shows the solution a~ of the inverse 
problem. The optimal estimator Sk, computed 
with formula (16), is shown on fig.3, together 
with confidence intervals (~2 0 ) computed with 
formula (18). Comparison of fig.2 and fig.3 
clearly demonstrates the superiority of the 
estimator ~k (with respect to a~) : the opti
mal solution ~k is plausible and smooth, and 
almost all true values ak lie inside the con
fidence intervals, while a~ exhibits very 
large and completely unrealistic oscillations. 

Similar simulations have been performed for a 
set of different values of the observation 
noise intensisty 0W ' and the nomalised mean
square estimation error : 

e 
a 

is shown on fig. 3bis . 

IDENTIFICATION OF UNKNOWN 
NOISE STAT ISTICS 

(21) 

The standard deviations (Jw and Ut must be known 
in order to solve the above identification 
problem. In cases where the choice of ~w can
not be based on a priori information, it may 
be estimated toge ther with 8. On the other 
hand the selection of a value ~ is discussed 
in the next section. 
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If ~ is known, one can consider the density 
f(~,W) as a likelihood function that must be 
maximized wi th re spec t to 8 and 0w' 
The logarithm of f(E,W) is written 

-log f(t.,W) 1 E't: W'W 
(n+2) logow + 2(~ +~) + K 

E W 

With definitions (19) and (20) this loglike
lihood function can also be written 

-log f(€,W) = L( 8 , o )= 
~ J

E
( 8 ) 

= (n+2)log( ow) + 2(~ + 
E 

J ( 8 ) 
w ) + K 
~ 

w 

where K is independent of 8 and 0w 

Minimisation of L(e,~w) yields 

aL 
ao 

w 

aL 
as 

o 

o ~ 

- J (8) n+2 w (21) 

(22) 

In this case, the optimal estimator becomes 
a non-linear function of the measurement Z 
(because ~w is itself a function of ~). Equa
tions (21) and (22) suggest the following 
procedure to solve the problem : 

a) solve equation 1;22) for a sequence of . * . . 
tentat~ve values 0w : each tr~al y~elds 
a tentative estimate B*. 

b) seleit the optimal value dw as the value 
of 0w that minimizes the loglikelihood 
function L(8, ow) or equivalently which 
verifies (21). 

This procedure has been applied to our nume
rical example : 

L(8*,o*) is represented in fig.4 
w 

The optimal estimated standard deviation 
dw=0.98 is very close to the true one (ow=I.0) 
and, clearly, the solution is unique although 
the estimator is non-linear with respect to Z. 
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10 

- Fig.4. -

SENSITIVITY OF THE SOLUTION 
TO THE VALUE OF 02 

E 

In the numerical example of the previous sec
tions, we did assume that 0E is exactly known 
(oE=I.0). 
Let us now consider that the value of o~ 
which is assumed known is in fact inexact 
(because, for example, it has been approxima
tely estimated from a priori empirical infor
mation on the spatial variability of the para
meter). In order to test the sensitivity of 
the solution of our numerical example, the 
identification procedure was performed for a 
sequence of inexact values of 'J~ and the re
sults are illustrated by fig.s, where the 
estimated noise standard-deviation Sw is 
drawn as a function of 0 2 • Clearly, even if 
the variance o~ is taken Eten times too large 
or ten times too small, the error on 0w re
mains smaller than ten percent of the true 
val~e . In the same way~ the Earameter e~tima
te B and the state est~mate Y are very ~nsen
sitive to o~ and remain acceptable even if 
02 is taken one or two orders of magnitude 
a~ay from its true value. 

1. 2 

1.1 

1.0 

0.'3 

0.8 

t~ue value 
of Uw 

,,2 
L--'--'-~---'--~--~Vt 

-iO-l -10-' 1 . ~o A01 

- Fig.s. -

Futhermore, in case where the choice of o~ 
cannot be based on prior information on the 
parameter, it is still possible to infer an 
estimate of o~ from the measurements Z if ° 
is given. Therefore, we define the followin~ 
auxiliary random sequences 

I:; zk+l-zk zk_l-zk 

k 
+ 

Q+Pk Q+Pk-l 

wk+1-wk 
w

k
_

1
-w

k 
wk Q+Pk 

+ 
Q+Pk-l 

(k = 1, •.. , n) 

It is easy to show that : 

(i) E(l:;k) = E(wk ) = 0 for all k 

(ii) I:;k = wk + Ek 

(iii) E(WkE £) 0 for all (k, £) 

(23) 

(24) 
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Then, obviously, n=( wl, ... , w )' and 
~=( ~ I""' ~ )' are gaussian ~ero-mean non 
stat~onary ¥andom sequences with covariances 

E( nn ') R 
w 

E(H') 

and the probability density of ~ is 

f (l-) { (2rr) det( 02 r +R ) }-n/2 
E: n w 

x exp {- .!.~, (021 +R )-12! } 
2 E: n w 

(25) 

The covariance R can be derived from 02 
while ~ containsWonly linear combinatio~s of 
measurements zk' Hence a maximum-likelihood 
estimate 02 may be obtained by maximizing 
f (:) wi th E:respect to 0 2 • 

E: 

IDENTIFICATION OF STEADY-STATE 
GROUNDWATER FLOW SYSTEMS . 

Consider that equations (I) and (2) describe 
the flow in an unconfined inhomogeneous 
I-D groundwater system. The state y (x) is 
the " hydraulic head", the inverse parameter 
{u (x) }- ] is the "transmissivity", q(x) is 
t he input flow-rate and Q is the lateral flow 
rate. 
With t he stochastic approach of previous 
sections, a plausible solution to the identi
fication of this groundwater flow system is 
obtained provided that (i) the lateral flow
rate Q is known and (ii) the inverse transmi
vity isagaussian process. Unfortunately, 
these requirements are somewhat unrealistic. 
Indeed, the flow rate Q can almost never be 
evaluated in practical situations and, on 
the other hand, it is generally accepted by 
soil scientists that the transmissivity is 
a lognormal process, not an "inverse normal" 
process. We will therefore modify the iden
tification method to take these facts into 
account. 

a) !~~_~E~~~~~~~~~~~Y_~~_~_l~g~~E~~l_EE~£~~ 

We denote Tk = log(u
k

)-] 

and we replace equations (10) and (11) by : 

(26) 

(27) 

With this model, the MAP approach leads to 
the minimization of the following performan
ce index (please compare with(18)) : 

I n 
J( 6 ,Y)= az l (T.-T. 1) 2 

E: i=1 ~ ~-

I n+1 
+"::L L (z . -y . ) 2 

0w i=O ~ 1 
(28) 

Here 6 =(TO, ... ,T ,yO) and the m~n~m~zation 
is constralned bynequation (26) (instead of 
(10)) which is non linear with respect to T

k
. 

b) ~L~~_!!~~~~~.:. 
The constraint (26) is simpl y a rewriting 
of the basic equations (8a-b). The unknown 
Q is eliminated from the problem if the 
constraint (26) is replaced by the flow 
equation (8a) and if the flow rate Q is 
evaluated using (8b), only after 6 and Y 
have been estimated. Obviousl y , equation (8a) 
must be written in terms of Tk . 

With these modifications, it is no longer 
possible to derive an explicit expression of 
~ (similar to (22)). The solution must be 
computed by an iterative algorithm. 

APPLICATION TO A REAL TWO
DIMENSIONAL AQUIFER. 

The performance index (28) can be taken as 
a dicretized form of the following continuous 
function 

J( 6 ,Y) = I f~ (~) 2 dx + ::70
1 f~{ z(x)_y(x) }2 

~ 0 dX w 0 ( 29) 

This continuous form provides a guide for a 
pragmatic generalisation of the MAP identifi
cation approach to two-dimensional ( 2-D ) 
steady-state distributed systems. Indeed, 
assume that T(xl ,x2), y(Xl,X2) , z(x ] ,x2) 
are defined on a 2-D domain S. Then a 2-D 
analog of ( 29) is : 

J ( 6 , Y) 

+ ~ f~ {Z(X ] ,X2)-Y(X ] ,X2) }2 dS ( 30) 
w 

On the other hand, steady-state flow in an 
inhomogeneous isotropic aquifer is classi
cally described by the following 2-D partial 
differential equation 

V(TVy ) + q = 0 

T(x ] ,x2)=exp {T(xl,X2) } is transmiss~v~ty, 
y(xl,x2) is hydraulic head, q(x],x2) is 
input flow-rate. 

(3 I) 

By a straightforward extension of the previous 
I-D approach, the identifi cation problem may 
be stated as : find ~ and Y that minimize 
J( 6 ,Y) under the constraint of the flow 
equation (31). 
Obviously , the minimization is performed 
numerically using finite difference approxi
mations of both the performance index and the 
flow equation. 
The method has been applied succesfully to 
the identification of a real groudwater flow 
system in the Dyle river basin (Belgium). 
Detailed descriptions of the aquifer geologi
cal characteristics, of the discretization 
procedure, of the available data and of the 
opt~m~zation algorithm are given in other 
publications (Bastin, 1979; Bastin and Duque, 
1981) . 
Here we limit ourselves to the presentation 
of a few typical results, for a small rectan-
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gular portion ( 3 km x 5.5 km ) of the aqui
fer. An observed hydraulic head contour map 
z(Xj,x2) is shown on fig.6. This map has been 
computed by interpolation between point-wise 
data (in 28 wells). a is evaluated to about 
3 .5 meters. Asequenc~ of identifications has 
been performed for increasing values of o~ 
(from 0.2 to 2000). The results are summa
rized on table I which shows how J . ' ey 
and iz - y imax vary with 02 . ey is the mean
square deviation between£s imulated hydraulic 
heads Y(Xj,x2) and the observed ones. For all 
va l ue s of o~ that we have t es t ed , ey is very 
small (max imum I meter) compared with the 
"a prio ri" uncertainty on the obse rved hydrau
li c he ad (exp r essed by 0w=3 .S me ters). On 
the other hand, spatial smoothing (expressed 
by J £) of the parameter is well illustrated 
on fig.7,8 and 9 where the spa tial behavior 
of T(xj,x2) is drawn for three values of o~ . 
Mo r e comp let e r esu lt s on this application are 
dis cussed in Bastin and Duque (1981). 

~
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Fig.7. Estimated transmissivity for 
three values of o~ along the 
cross-section A-A' . 
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£ 
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