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Abstract: Using Lagrange formalism and differen- 
tial geometry, a general dyiianiical model is derived 
for 3-wheels mobile robots with non holonoinic cons- 
traints. It is shown that  a static state feedback al- 
lows to  reduce the dyiiamics of the system to a form 
for which stabilizing input-output 1inea.rizing control 
is possible. 

1 Iiitroduction 
In this introduction, we give a brief account of the the- 
ory of mechanical systems with noli holonomic cons- 
traints, which was developed by many authors a t  the 
end of the last century (see e.g.  [2,5]). A more corn- 
preheiisive treatment can be found in [l]. 
A mechanical system whose configuration is coni- 
pletely described by a ,ia-vector 

of geiieralized coordinates, can be subjected to 'tu kine- 
matic iiidepeiideiit constraints (7n < 1 2 )  of the form : 

where a ] ,  . . . I U,,, are smooth linearly independent vec- 
tor fields on R" and 4 denotes the time derivative of q 
as usual. We introduce a (777  x n )  matrix A(y) made 
up of the vector fields u j ( y )  as follows : 

The  independence of the constraints implies that  this 
matrix A(y) has full rank 771 for all q in R" . The nuiii- 
ber of degrees of freedom (d .0 . f )  is defined as the dif- 
ference between the number of generalized coordinates 
and the number of independent constraints : 
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We define a smooth distribution A ,  associated with 
the constraints (1) : 

A(y) = l i e ~ ( A ( y ) )  (4) 

The  constraints are holonomic or completely inte- 
grable iff 4 is integrable, that  is by Frobenius theorem, 
iff A is involutive. Our concern in this paper is to  deal 
with inechanical systems which are 11011 holoiioiiiic and 
whose associated distribution A is not involutive. We 
consider its involutive closure denoted a. 
Let (72 - m*) denote the dimension of A,  with i n x  < 
m. Since A is involutive, it is completely integrable. 
Hence, the set of independent constraints can be par- 
titioned in two parts : I *  holonomic constraints and 
(72 - in*) non liolonomic constraints. This implies that  
nz" generalized coordinates can be eliminated from the 
dynamical description of the system as we shall see in 
the next sections. 

2 Descriptioii of a mobile robot 
Mobile robots constitute a typical example of noli h o l e  
nomic systems (see e.g. [3,6,4]). We consider here a 
robot moving on an horizontal plane, coiistituted by 
a rigid trolley equipped with lion deformable wheels. 
During the motion, the plane of each wheel remains 
vertical aiid the wheels rotate around their (liorizon- 
tal) axis whose orientation with respect t o  the trol- 
ley can be fixed or varying. The  contact between tlie 
wheels and the ground satisfies the conditiolis of pure 
rolling and noli slipping. The  motion of the robot 
is achieved by actuators which provide torques acting: 
011 tlie rotation and/or tlie orieiitatioii of the axis of 
some of the wheels. 
We now introduce the definition of the generalized c e  
ordinates and some additional notations which will al- 
low us to  describe tlie configuration and tlie dynamics 
of the robot. 
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2.1 Robot position 
Colisider an inertial reference frame { O , I I ,  I 2 }  in the 
plai i r  of iiiotioii. Define a. reference point Q on tlie 
h ~ l l e y ,  and a basis ( 2 1  , 2 2 )  a,ttached to  the trolley 
(sec, Fig.1). The  position of the trolley in the plane is 
completely specified by the following 3 variables : 

0 2 ~ y : the coordinates of the reference point Q in 
the inertial frame, 

0 tr : the orientation of the basis {zl , 22) with res- 
pect to the inertial basis. 

We define the vector as : 

E =  (.c y try ( 5) 

0 1  I b 

X ' I  

Figure 1: Position of the robot in the plane 

2.2 Characterization of a wheel 
W e  iiow characterize the position of a particular wheel 
(see Fig. 2). Consider the mobile frame {Q, 2 1 ,  2 2 )  

a.t(,aclied to the trolley. T h e  center B of the wheel is 
cuiiiic~ctecl to the trolley by a rigid rod -4B (of constaiit 
Ic i igh  d ) ,  which can rotale a.round a. fixed vertical axis 
itt, :I. T h e  position of this point il with respect to  
talle trolley is specified by 2 constants : the length 1 
a.iicl t,lic> angle CY. The  rotation angle of the rod AB 
with respect to  &A is denoted p. The  orientation of 
tht, 1)la.ne of the wheel with respect to AB is given 
Iby the constant angle et. The  rotation angle of the 
wlicxl around its (horizonta.1) axis is denoted 4 .  The  
radius of each wheel is R. The  position of the wheel 
is ~,l ic~rc~l 'oi~~ cha.ractc=rized by a. set of five constants : 

{If I ~ d ( I  ~ -, } ,  a.nd its inot.ion by 2 varying a.iigles : 
/j(~) (orieutatioii of the rod .AB) and q ( t )  ( the  rotation 
ai lgle) .  Oliviously if the rod .4B is fixed tlie angle p 
I ) ( 3  coil ies a coils t a n t, . 
With this description it Iiecoiiies easy to coiiipute the 
\;(:loci(,y of the point, of tlie wheel in contact "ith tlie 

X l  

Figure 2: Characterization of a wheel 

ground. The  component of this velocity in the plane 
of the wheel is : 

[ - s i 7 ~ ( 0  + P + 7) ; COS(& + P + 7) ; 

dcosy + Icos(P + -y)]lz(tr)i + dcosyb  + R$ 
(6) 

and the component orthogonal to  the wheel : 

(7) [cos(u + p + y) ; sin(cr + p + y) ; 
dSi71-1 + ISZlZ(P + y)]R(d) i  + dSi?Zyb 

where R(6') is a ( 3  x 3)  orthogonal rotatioil matrix : 

[ '," si;$ ; R(6') = -si,n@ cos0 0 ) (8) 

These expressions will be used in the next sections to  
explicit the pure rolling and non slipping conditions. 

2.3 Generalized coordinates 
We use a lower index notation to identify the quantities 
relative t,o ea.ch wheel. Throughout the paper,  we sha.11 
examine in more details the particular case of %wheels 
robots represented in Fig. 3 : the 2 front wheels (index 
2 and 3)  have a fixed orientation while the orientation 
of wheel 1 is varying. The  theory is easily extended 
to robots with an arbitrary number of wheels (see [4]). 
According to our previous description, the geometry 
of the wheels is completely described by the following 
set 

{Ri, l i ,  4 ,  ai, 71, P t ,  4i ; i =  1 ,  ' . .  , 3 )  

The reference poiiit Q is tlie center of the segment 
BzB3 (see Fig. 3). The Insis vector X I  is aligued with 
BZB3. The  geometric characteristics are : 
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Wheel 1 : R1 = R,  11 = L ,  dl = d ,  cy1 = T, 

P1 = P ,  71 = E .  2 

L 

Wheel 2 : Rz = R,  12 = L ,  $2 = 0 ,  a2 = 0, p2 = 0, 
yz = 0. 

Wheel 3 : 
p3 = 0 ,  73 = 0. 

R3 = R, 13 = L ,  d3 = 0 ,  a3 = T ,  

Figure 3: 3-wheels example 

The  robot motion is then completely described by 
the following vector of 7 generalized coordinates : 

2.4 

The  pure rolling conditions, i.e. the fact that  the 
component of the velocity of the contact point of the 
wheel with the ground in the plane of the wheel is zero, 
are deduced from (6) : 

Kin e ina t ic a1 c o ii strain t s 

Jl(3)NQK + JZP = 0 (10) 

w i t h  

- s i n p  cos@ - LSi1 .16  

L 
1 

0 - 1  
Ja(i,i) = R ,  i = 1 , I  ' . .  3 
J a ( i , j )  = 0 , if i # j 

The  non slipping conditions, i.e. the fact that  the 
component of the velocity of the contact point, or- 
thogonal t o  the plane of the wheel is zero, are deduced 

(11) 
from (7) : 

cl(p)R(B)i + c,p = 0 

where C1 and C2 are partitioned in two blocks : 

with : 

We note that  these constraints (10)-(11) are in the 
general form of kinematical constraints (1). 

2.5 Degrees of freedom 
To obtain the number of degrees of freedom (3) ,  we 
compute the rank of the following Gx7-matrix asso- 
ciated with the constraints (10) aiid (11) : 

Due to the block triangular structure of A(@,Q) ,  it 
is easy to  check that  .1(p,S)) has rank 5.  Conse- 
quently, the robot has 2 degrees of freedom. More- 
over, runk(Cl1) being equal to  l, we deduce that the 
two last constraints are equivalent. Without loss of 
generality, we select the constraint corresponding to  
the second wheel. Defining the following row vector, 
Cy, = (1 , 0, 0)) the corresponding constraint is writ- 

For any ( satisfying (1,3), there exist only one value 
of b aiid one value of @ which satisfy the other cons- 
traints. These values are expressed as : 

2.6 Deteriiiiiiatioii of the iioii holo- 
ii o iiii c co n st raiiit s 

We select a basis ( y 1  , p ? }  of the 2-dimensional space 
Ker(CT1) as follows : 

p1 = (0 1 0)T ; p 2  = ( 0  0 1)T (16) 

Then,  using (13)-(15) ~ the 2-dimensional distributioii 
A associated to  the coiistraints is defined by : 

RT (Q)pi RT ( Q ) p ?  
SlJ"71 { ( Dl(P)Pl 1 , [ DI($)~JL, I} (17) 

0 3  ( /3 )ill D?(J)lJ .  
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After a few computations we can check that  : 

d i m A  = 6 (18) 

This means that  the constraints are not completely 
holonomic but that  there exists one (i.e. n - m* = 1) 
fuiictioii of (I, constant along the trajectories satisfying 
the coilstrailits. This function can be exhibited by 
sunlining the constraints of pure rolling of wheels 2 
and 3 .  This sum is written : 

L i  + R(41 + $2)  = 0 (19) 

which implies that  LO(t) + R(4l(t)  + $a(t))  is constant 
along all the trajectories satisfying the constra,ints. 

3 Dyiiaiiiical equatioiis 

111 t l i c -8  ca.se of mobile robots the Lagrangian is reduced 
to the  kiiietic energy T(q ,  (1). Using the Lagrai1gia.n 
f'wuialisiii, the ciyiiamical equations have the following 
Sor111 ; 

A = (XI  , A ? ,  & ) ,  ,u, I/  being the 5 Lagrange multi- 
pliers associa.ted with the 5 independent kinema.tica.1 
coilstrailits, Bu is the set of generalized forces applied 
to   lie system with u the %vector of external forces 
a,iid torques applied to  the system by the actuators. 
Tliesc 7 eqmtions (20) together with the 5 indepen- 
dent ltinematical constraints describe the dynamics of 
the iiiobile robot. 
\We now specify the implementation of the actuators. 
\Ye consider 2 possible cases 

0 Case 1:  The  2 motors provide the torques for the 
rota.tioii of wheels 2 and 3. In this case B1 does 
tiot exist and BZ is giveii by : 

0 0  
(21) 

0 Case 2 : The  2 motors are implemented on wheel 
1 ,  the first one for its orientation, the second one 
for its rotation, which gives : 

T Bl = (1) and B2 = ( 1 0 0 ) ( 2 2 )  

3.1 Kinetic energy 

The  kinetic energy of the system is expressed as the 
following symmetric quadratic form : 

T =  
f W W ( P ) W )  m W P )  0 

0 1, 0 1 4  0 ) v  

(23) 
where M ( P )  is a (3  x 3) symmetric matrix defined by : 

3 

Mll(P) = M22(P) = M + mi , Ml2 = 0 
i=l 

z =  1 

- 5 milisincui 

h/la3(P) = -Me1 - midicos(cui + P i )  

- 5 mi1icoscL.i 

Z = l  
3 I 

i= 1 

i= l  

(24) 
I 

V(p) is a 3-vector defined as : 

-nzldlsi?a(al + PI) 
mldlcos(w + P1) ) (25) i 4 ?nidilicOS(Pi) + Ipi 

\ / (P I  = 

I ,  and 1, have the following form : 

Ip = ?Tiid; + Ip l  
L#(i,i) = l,.i , i = 1 , " ' , 3  (26) i I m ( i , j )  = 0 if i # j 

In definitions (24)-(26), we have introduced various ne 
tations relying on the mass distribution of the robot : 

0 n/l : mass of the trolley, 

0 mi : inass of wheel i ,  i = 1 ,  ' '  , 3,  

0 e l ,  ea : coordinates of the center of mass of 
the trolley in the frame attached to  the trolley 
{ Q ,  11 , 1 2 1 ,  

0 10 : inertia moment of the trolley around the ver- 
tical axes passing through its center of mass, 

0 Ipi  : inertia moment of wheel i, around the verti- 
cal axis passing through Bi , 
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0 Iri : inertia inonieiit of wheel i, around its axis of 
rotation. 

With this expression of tlie kinetic energy, tlie La- 
grange equations (20) is rewritten as : 

M ( P ) R P ) i ' +  fl(Q,e,W) = JT(PP+ 

V'(P)R(@)E+ f2(Q,i ,P,P)  = G O P  + BlUl 

I ,  4 = J,TX+Bauz 

C?O(P)P + G I T V  

(27) 
where f l  and f~ are respectively a 3-vector and a 1- 
vector of functions of 8, 8 ,  /3, P .  

3.2  Eliiniiiatioii of variables 
Colisider the full rank (3  x 2 )  matrix P made up of 
the vectors yl  aiid pL! iiiakiiig a ba.sis of I<e,rCT1 (see 
eq. ( I S ) ) ,  that  is : 

cy ,P  = U (28) 

We now eliiniiiate the 5 La,graiige multipliers between 
the 7 equations (27). Preinultiplying tlie first equality 
of (27) by P T ,  this elimination leads to the following 
matrix equation : 

P?' ( Ad ( ,O) + DT (P  ) I,' '' ( p) ) R( 0 )$ 

(29) 

G(P) = ( mw1 mP)R! ) (30) 

+PT(V(P)  + DT(P)I,,)B 
+P'DT(P)I&)dj + PT:fl(B>d, P A  
+ ~ * ~ T ( p ) f ? ( e ,  0 ,  /3, B)) = P ~ G ( P ) U  wit11 

The colistrailit (13) implies that  there exists a 2-vector 
77(t) = (7]1(t) 772(t))?'  such that  : 

R ( o ) ~  = ~ 7 l ( t )  i.e. 
711 = - i s i l l0  + j c o s e  
712 = e (31) 

The  colistrailits (13) and (15) call tlieii be rewritten 
as follo\vs : 

( 3 2 )  
= D,(/3)P1] i @ = D.,(@)P!] 

Differentia.tjng (31) and ( 3 2 )  with respect to time, re- 
placing i, p, 4 in (29) a.nd noticing that  : 

( &e)( = R ( Q ) R - ~ ( ~ ) P ~ ~  = ~ E P V  wit11 

:) 
0 0 0  

(33) 

( 3 7 )  

4 Control design 

4.1  System reduction 
System (37) has a triangular structure : the variables 
( E ,  1 1 )  appear only in the first 5 equations. Since our 
purpose is t o  control the trajectory of the robot in the 
plane, i.e. only the variables E ,  we can restrict the alia- 
lysis to these first 5 equations. No problem of iiiteriial 
stability caii occur from this reduction, $ arid Q being 
uniformly bouiided provided 11 is bounded. 
Moreover, it is easy to  check that the input matrix 
PTG'(p) has full ra.nk for the two considered configu- 
rations, see eq. (21) )  ( 2 2 ) ,  (30). Consequently, for 
any (111, U?) there exists one aiid only one static state 
feedback u ( B , O , ~ ~ )  such that  the system of' equations 
(37) in the variables ( t ,  71) reduces to : 

171 = U 1  ,j.. = e = 0 2  

i = - 7 / i S i l Z O  I lj = ']ICOSO (38) { -  0 = 112 

4.2  Input-ouput feedback linearization 
Colisider for instance a point Q1 whose coordinates in 
tlie frame attached to  tlie robot are (0 ,  - 11) (see Fig. 
3). Define a.s outputs the position of Ql in the plane 

equation (29) is rewrit,teii as follows : 

P T l W ( d ) P 7 j +  P?'p(B,Q,P,P,77) = PTC(P)U (34) 
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It follows that 

Inpul-output linearization is therefore possible be- 
cause the matrix of tlie coefficients of V I  and 02 bas 
full rank, for any 8 ,  provided h is not zero. 
In order to  analyse the internal stability we introduce 
the following change of coordinates c = a(<, 17) : 
(< deuoLlllg IIOW L h t -  L'ector (i y 8 ) T )  

i i i  order to constitute a diffeomorpliisni, whose inverse 
is given by : 

cos8 s i n 8  
! ' I = (  i )  , R I = (  -sin8 cos8 

( 42) 
111 tlie iiew coordinates <, the system (38) can be 
rewritten as follows : 

w~iere  ( " ( C )  ) = R:(c5)P1 is a non siiigular ( 2  x 2 )  

iiiatris. Equation (43) shows that  provided (2 a i d  
i . 1  ( i . ( ,  .;. a i i t ~  4 )  are  ~iouiideci, (5 (i.e. c j )  remailis 
bouiicled . This implies the boundedness successively 
of;, / I  aiid therefore of /3 aiid q .  

4.3 Trajectory tracking 
'I WO different cases are considered 
a)  Assume that  the control purpose is to track a 
sniooth reference trajectory ( Z d ( t ) ,  j j d ( t ) )  in the plane. 
We clioose ( V I ,  va )  such that  : 

-v ls i lz8 + V ~ h C O S 8  = i; + k l l ( k d  - i) 
+ x . . , 2 ( 2 d  - 2 )  + l,lsCoss + h B 2 S i l Z 8  

+k2.'(,jd - y )  + 1,&inB - h8'cos8 

(44) 'UJCos8 + v?hsi?l8 = i d  + k z l ( i d  - i) 

Provided a suitable choice of the constant gains b i j ,  

tlic control law (44) ensures the exponential stability 
of (he errors 5 = Z - .?d a i d  $ = 9 - Y d  a.s well a.s the 
i i i t  (:rim1 stability. 
ti) ,Zssii~iie UO\V t1ia.t t,he coiitrol purpose is t80 track a 
sirioot~li t,rajjectory ( % d ( t ) ,  i j d ( t ) )  Q d ( t ) )  specified in the 

(Z,y, 8) space, compatible with the constraints. Af- 
ter a simple computation of the tangent linearization 
of t he  dynamics of 8 = 0 - B d ,  we can check that the 
control law (44) ensures stable trajectory tracking pro- 
vided that  the component along xz of the velocity of 
& I ,  T ] l d  is negative, with : 

qld -6dsinod + ydcos8d - 2h6dSinBdcOSdd (45) 
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