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Abstract_ In this paper, it is shown how a simple adaptive control algorithm can contribute 
to optimize the yield of fermentation processes operated in fed-batch . The proposed 
algorithm does not require any prior analytical expression for the fermentation parameters 
(like the specific growth rate or the specific production rate), Its performances are compared 
in simulation to other control solutions (optimal control, PI regulator) . 
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1. Introduction 

The fed-batch operation is very commonly used for a 
large class of industrial fermentation processes since it 
allows to avoid undesirable effects which may appear 
with other operat ion modes (e .g. substrate inhibition in 
batch reactors , or secondary metabolite production in 
continuously-fed reactors) . 

(section 4) , In each case, the effectiveness of the 
adaptive controller is illustrated by realistic simulation 
results . And in section 3, its performances are 
compared to those of an optimal control strategy and of 
a PI regulator, 

Optimal control theory appears to be a priori well suited 
for solving optimization problems of fed-batch reactors, 
such as "what is the distribution of nutrient in the 
influent over the fermentation duration which will 
optimize the yield of the process?", From the early 70's, 
a number of theoretical works have concentrated on 
the optimal control of fed-batch reactors (e ,g. Fishman 
& Biryukov, 1974; Oh no et ai, 1976 ; Yamane et ai, 
1977; Ohno et ai , 1978 ; Peringer & Blachere, 1979; 
Kishimoto et ai , 1981; Wu et ai , 1984; Parulekar et ai, 
1985; Parulekar & Lim, 1985; Duvivier & Sevely, 1987). 
However, the practical implementation of optimal 
control strategies is subject to great difficulties. Besides 
the complexity of the controller itself, it also requires the 
(precise) knowledge of the process kinetics and 
particularly of the analytical structure of the 
fermentation parameters (like the specif ic growth rate 
or the specific production rate) . 

Our contribution in this paper is to show that adaptive 
control algorithms can constitute a valuable alternative 
to optimal control of fed-batch processes. The main 
advantages are : 

- their implementation is much more simple 
- they do not require any prior analytical model of the 

specific growth rate and the specific production rate 
- their behaviour can be nearly optimal (and even 

completely optimal in some instances, see section 3) . 

We describe two applications : optimization of the 
biomass production (section 3) and optimization ot the 
production of a synthesis product in liquid phase 
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2. Dynamical Model 

The kinetics of the microbial growth and the 
metabolites production in a stirred tank bioreactor 
operating in the fed-batch mode is described by the 
fo llowing (commonly used) dynamical state-space 
model : 

X(t) = ll(t)X(t) _ F(t) X(t) 
V(t) 

8(t) = k11l(t)X(t) + F(t) [Sin(t) - S(t)] 
V(t) 

P(t) = v(t)X(t) _ F(t) X(t) 
V(t) 

V(t)= F(t) 

with X(t) : the biomass concentration 
S(t) : the substrate concentration 
Sin(t) : the influent substrate concentration 

P(t) : the synthesis product concentration 
V(t) : the volume of the culture 
F(t) : the influent flow rate 
).L(t) : the specific growth rate 

v(t) : the specific production rate 
k1 : the yield coefficient 

(1 ) 

(2) 

(3) 

(4) 
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3. Control Objective ; Maximization of the 
Blomass production X(t) 

Statement of the algorithm 

We assume that the specific growth rate Jl(t) is a non 
linear function of the substrate concentration S(t) 
inhibited at high concentrations as shown in Fig.1 . 
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Fig .1 The Haldane growth rate model 
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Our modelling assumption about Jl(t) is that it can be 
written as follows: 

Jl(t) = p(t)S(t) (5) 

with P(t) a positive bounded function : 0 :5 p(t):5 Pmax 

The function p (t) is considered as a completely 
unknown time-varying parameter, regardless of the 
(known and unknown) biological or physico-chemical 
factors that can influence the growth. This is in line with 
a number of recent works on estimation and control of 
fermentation processes (e.g. Holmberg & Ranta, 1982; 
Dochain & Bastin, 1984; Stephanopoulos & San, 1984; 
Bastin & Dochain, 1986). This assumption (5) does not 

introduce any restriction on the structure of Jl(t) : it 

simply implies that Jl(t) = 0 when S(t) = 0 in accordance 
with the physical reality. 

Our conjecture is then that adaptive regulation of S(t) at 
valt.:es corresponding to a maximum specific growth 
rate should contribute to a maximization of the yield of 

biomass production, without any modelling of p(t) being 
necessary, unlike in optimal control methods. 

Defining the time-varying parameter: 

$(t) = k1 p(t)X(t) 

equation (2) is rewritten as follows: 

8(t) = -$(t)S(t) + F(t) [Sin(t) - S(t)] 
V(t) 

(6) 

This equation is the basis for the derivation of the 
control algorithm. 

We assume that : 

- the flow rate F(t) is constant: F(t) = FO (until the tank 

is full, of course) 

- the substrate concentration S(t) is measured on-line 

- the influent substrate concentration Sin(t) is the 

control input. 

The control input Sin(t) is calculated as follows : 

Sin(t) = Yill {C1 [S' - S(t)] + [ ~+ ~(t)]S(t)} (7) 
FO V(t) 

except if Yill {C1 [S' - S(t)] + [~ + ~(t)]S(t)} < 0, 
FO V(t) 

then Sin(t) = 0 

with C1 > 0 and ~(t) an adaptive estimate of $(t), which 

is calculated as follows: 

. 
A 
<1>(1) = C2S(t)[S' - S(t)] C2 > 0 (8) 

except if ~(t) = 0 and S(t) > S', then ~(t) = 0 

The theoretical motivation for the above control 
algorithm (7)(8) can be found in Dochain and Bastin 
(1988). 

Simulation Results: Comparison with Open 
Loop Operation 

The simulation of the "true" process is carried out by 
using equations (1 )(2)(4) with an Haldane growth rate 
structure (Fig.1) : 

and the following set of parameters : 

Obviously, the above analytical expression for Jl(t) is 
completely ignored by the control algorithm. The 
desired set point S' is the value of the substrate 
concentration S which maximizes the specific growth 

rate Jl(t) : 

S' = ..JKmKi = 1 

In Fig .2, the initial and operating conditions and the 
design parameters C1 and C2 have been set to the 

following values : 

St~) = 1, X(O) = 0.1, V(O) = 10, Sin(O) = 3.5 

FO = 0.1, Vf = 12, C1 =20, C2 =99, $(0) = 0.1 

(with Vf : final volume of the culture). 

Fig.2 compares closed loop and open loop operations 
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of the fedbatch process. In both cases, the reactor is fed 
with the same amount of substrate (Fig.2c) . In open 
loop, a constant input concentration Sin(t) is used, 

while in closed loop, Sin(t) is computed by the control 

algorithm (7)(8). One hour after the end of the feeding 
period, X(t) has already reached its maximum value, 
while in open loop, it remains below 10% of the closed 
loop value of X(t) . 
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Fig.2 Maximization of the biomass production 

Comparison With Qptlmal Control 

We have also calculated the solution of the optimal 
control which consists of maximizing 

J =X(T)V(T) 

i.e. the biomass production over the feeding duration T. 

This solution is written: 

S(O) = ..JKmKj 

Sin(t) = ..JKmKi + kl V(t) 1l*v'K,;Rj X(t) 

FO 2Km + ..JKmKj 

with V(t) and X(t) computed from: 

. 
V(t)=FO 

>«t) = 1l*v'K,;Rj 

2Km + ..JKmKj 

X(t)- ~X(t) 
V(t) 

(9) 

(10) 

(11 ) 

(12) 

The choice of the initial value of the substrate 
concentration, S(O) (equal to the optimum SO) induces 
a relatively simple optimal control solution (the general 
solution when S(O) is arbitrary, is much more complex). 
However, the optimal control still requires the 
knowledge of the growth structure and of the 
coefficients Il*, Km' Ki and k1 in this case, while our 
controller (7)(8) is much simpler and only needs an 
appropriate choice for the "optimal" set pOint So. 

The closed loop behaviour of X(t) with the control 
algorithm (7)(8) is very close to the optimal trajectory 
given by (9)(10)(11)(12) : actually, no significant 
discrimination between both curves can be made in 
Fig.2, and this despite an initial error of 75% in the 
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Robustness of the Control Algorithms i 
SensjtlYity to Model Inaccuracies 

A critical problem with the above control algorithms is 
the precise knowledge of the value of the substrate 
concentration S' which maximizes the specific growth 
rate Jl(t). It may appear very difficult in practice to 
evaluate S' with accuracy (e.g. due to the lack of 
reproductible experiments) . 

We have studied the sensitivity of both control 
algorithms to such inaccuracies. In Fig.3, we have 
considered that the "optimal" value of S' was known 
with a 10% error. This means that in our simulations, 
the adaptive controller (7)(8) has been implemented 
with a desired set pOint S' = 0.9 (while the "true" S' is 
equal to 1). A similar 10% error on S' has been 
introduced in the optimal control law (9)-(12) by setting 
Km equal to 8.1 (instead of 10). Our adaptive controller 
appears more robust to this model inaccuracy : with 
respect to the ideal case of Fig .2, only a slight 
diminution of the final biomass concentration X has 
been noticed, while with the optimal control, the 
production of biomass has fallen under 50% of the 
optimal value. 

Comparison with a PI Regulator 

One of the basic feature of our controller (7)(8) is its 
adaptive structure which allows for the tracking of the 
time-varying parameter <P(t). It is worth noting that in our 

application, the variations of <P(t) are quite substantial 
(about two orders of magnitude (fig .2d)). It would 
therefore be interesting to compare our controller with a 
non-adaptive control scheme, e.g . a PI regulator. 

The PI regulator equation can be written in Laplace 
transform (with p as Laplace variable) : 

Sin(P) = (Kp + ~) (S' - S(p)) 
p 

where Kpand KI are the proportional and integral gains 
of the PI regulator. 

Let us choose Kp and KI as follows. If <p and FN are 

constant, then equation (6) is a first order stationary 
linear equation, with a pole equal to -(<P + FN) and a 

static gain F/(<PV + F), i.e. in Laplace transform : 

S(p) = _:....:.FN-=--_ Sin(P) 

p+<P+FN 

Fig.4 compares the adaptive controller and the PI 
regulator when S(O) is equal to 0.02. Note the 
oscillating behaviour of the PI regulator. Due to the non 
stationarity of the parameter <P(t), the PI is not able to 
maintain the substrate concentration S(t) at the set 
point S' at the end of the feeding period. Moreover the 
final biomass production with the PI is only about 85% 
of the value obtained with the adaptive scheme. 
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4. Control Objective : Maxlmlzatlon of the 
Product Concentration PCt) 

We consider a fed-batch bioreactor described by 
equations (1 )(2)(3)(4) . 

We assume that the specific production rate u(t) is a 
non linear function of S(t) inhibited at high 
concentrations : a typical example taken from 
Takamatsu et al (1975) is shown in Fig.5. 

\J 

Consider mean values for <P(t) and FIV in our 10 
application (e.g. <Pmean = 1.25 and (FN)mean = 0.01), 

and take Kp and KI so as to compensate the pole -(<P + 

FIV)mean and have a closed loop dynamics close to 

the open loop dynamics which corresponds to these 
mean values, e.g. : 

Kp = 100, KI = 125 
Fig.5. Specific production rate u(t) 
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Our conjecture is now that regulating the substrate 
concentration S(t) at values corresponding to a 

maximum u(t) would contribute to the maximization of 
the yield of the product formation. 

The same control algorithm (7)(8) can be used which 

do not need a model for u(t) but only requires a good a 
priori knowledge of the value of S(t) which maximizes 

u(t). 

Sjmulation Results 

The "true" fed-batch process is simulated by using 
equations (1) (2) (3) (4) with a Monod specific growth 
rate: 

~=~ 
Km+ S 

and the following specific production rate u(t) 
suggested by Ohno et al (1976) (see fig.5) : 
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Fig.6. Adaptive control of fedbatch bioreactors : 
maximization of P(t) 

u(t) = -6 S(t)2 + 16.75 S(t) 

with the following values for the model parameters: 

~. = 0.35, Km = 1, k1 = 1/0.135 

Fig.6 compares closed loop and open loop operations 
of the fed-batch bioreactor : the closed loop operation 
doubles the final product concentration P(t) . The 
following parameters and initial conditions have been 
considered : 

"-
C1 = 0.33, C2 = 20, 41(0) = 0.2, S' = 1.4 

S(O) = 1.4, PtO) = 0, X(O) = 0.2, Sin(O) = 1.6 

FO = 0.3, V(O) = 1, Vf = 7 

Quasi-Optimization of the Process 

It is straightforward that the control problem here looks 
very similar to the preceding one (maximization of the 
biomass production, section 3) . In fact, it would be 
completely similar if the production rate in equation (3) 
was proportional to the product concentration P(t) , i.e. 
of the form u(t)p(t) (instead of u(t)X(t)). 

A first consequence is that the optimal control problem 
which consists of maximizing the final product quantity 
V(T)P(T) is much more complex. And no analytical 
solution (such as in equations (9)-(12) in section 3) can 
be emphasized here. 

As a second consequence, our adaptive controller 
(7)(8) can no more be shown to be optimal (as in 
section 3, Fig.2). However, quasi-optimization of the 
process could be carried out as follows . Let us use the 
adaptive algorithm (7)(8) and search (e.g. by some trial 
and error method over a few fed-batch experiments) for 
the "best" value of the set point S·. By the "best" value 
of S', we mean the value of S' which , with algorithm 
(7)(8), maximizes the final product quantity V(T)P(T), or 
alternatively, the value of S' which gives the highest 
yield 

V(T)P(T) 
~=------------------------

T 
f F(t)Sin(t)dt + V(O)S(O) - V(T)S(T) 
o 

i.e. the ratio of the final product quantity over the 
quantity of nutrient which has been consumed. This is 
illustrated in Fig.7. Note that the simulation of fig .6 (with 

~f(T)P(T) (x) 

o o 
It) 

1 1.4 

o 
l it) 

2 
Fig.7. Final product quantity V(T)P(T) (x) and yield 

~ (0) vs set pOint S' 



114 D. Dochain and G. Bastin 

a desired set point S' = S(umax ), i.e. the substrate 

concentration which maximizes the production rate u(t} 
(see fig.5)} gives a very good compromise between 
both criterions. 

5. Conclusions 

In this paper, we have shown that simple adaptive 
control algorithms can contribute to optimize fed-batch 
fermentation processes. The proposed algorithm does 
not require any analytical expression for the 
fermentation parameters (like the specific growth rate 
and the specific production rate). In particular, its 
performances has been compared to other control 
strategies (optimal control , PI regulator) . 

It is worth noting that similar ideas can be used in other 
control problems or for on-line estimation purposes 
(see Dochain & Bastin, 1984; Bastin & Dochain, 1986; 
Dochain & Bastin, 1988). 
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