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ABSTRACT, 

It is shown that adaptive approximate state feedback 
linearization can be achieved for a class of sampled
data non linear models which arise from the sampling 
of sta te feedback lineari zable and linearly para
metrized continuous time systems. 

1. INTRODUCTION, 

Adaptive control of non linear conti nuous time 
systems is a subject of growing interest. Several direct 
and indirect adaptive schemes have been recently 
di scussed and analysed for the class of non linear 
systems which are state feedback linearizable and 
linearly parametrized (see e .g. Taylor (1987), Taylor et 
al. (1988) , Sastry and Isidori (1988), Pomet and Praly 
(1988), Bastin and Campi on (1989». In addition , speci
fic applications have been reported in Biotechnology 
(Dochain and Bastin , 1984) and in Robotics (e.g . Craig 
et aI., 1986: Middelton and Goodwin, 1988). 
The interest of a continuous time des ign is however 
restricted by the fact that controllers are most often 
implemented digitally . The issue therefore arises of 
designing discrete time controllers based o n the 
sampled-data model s of continuous time systems. Our 
objective, in this paper , is to derive and analyse 
sampled-data counterparts of the adaptive continuous 
time lineari zi ng controllers proposed in (Bastin and 
Campion, 1989). As we sha ll emphasize, this derivation 
is not immediate, mainly because both state feedback 
lineari za bility and linear parametri za tion can be 
destroyed by the sampling process. For simplicity , we 
shall limit ourselves to adap ti ve regulation of non 
linear systems which are full s tate lineari zab le 
without diffeomorphism. This re striction should be 
interpreted as a fir st attempt towards a more general 
theory of adaptive contro l of sampled -data non linea r 
sys tem s. 
The paper is organized as follows . The class of non 
linear systems under consideration is described in 
sec tion 2, characterized by thre e basic assumptions 
which guarantee discreti zab ility, feedback lineari za
bility and linear parametrization . The exact sampled
data model of these continuous sys tems is stated in 
sec tion 3. The discrete time adaptive control problem 
we address in this paper is formulated in section 4 , 
where the difficulties of the transposition from 
continuous tim e to di sc rete time are also emphasized . 
The control law is based on the "certainty equivalence 
principle" and is obtained combining an "approxi 
mate" lineariz ing control law and a suitable parameter 
estimator which is presented and analyzed in sec tion 
5. In section 6, we discuss non adaptive and adaptive 
regulation , in the special case where the sys tem has 
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as many inputs as there are states , and then generalize 
for the situation where the input dimension is lower 
than the state dimension . For the readability of the 
paper, the proofs are not given in the text but , within 
the bounds of the paper length , some of them are 
given in appendix . 

2, SYSTEM DESCRIPTION IN CONTINUOUS TIME. 

We consider class of non linear sys tems , with 
parametri c unc e rt a inty , which are sta te feedback 
linearizable, linearly parametrized and linear in the 
control input. 

They are denoted as follows 

~ = [(x,eo) + G(x,eo) u (2. 1) 

where XE Rn is the state, UE R m is the control input , 

eO E RP is the parameter vector, f(x ,eo)E Rn is a vec tor 
field, G(x,eo) is a nxm matrix on R whose columns are 

the vector fields gi(x,eo)E Rn (i = I ,m). 

By "parametric un certaint y", we mean that the "true" 
value eO of the parameter is unknown, but that an 
estimate e is available. 

The systems (2.1) are supposed to sat isfy the following 
assumptions for eve ry (x,e) E Bx x Be , where Bx and Be 

denote compact sets containing x=O and e=eO as interior 
points i.e. there exists 2 strict ly positive constants k 1 
and k2 such that 
I x I $ k} ~ XE Bx and 11 e - eo 11 $ k2 ~ eE Be 

AI. (discretizability) 
gi(x,e) are analytic . 

the vect or fields fCx,e) and 

A2, (lineari zab ilit y) th e matrix GCx,9) has full rank 
and there exists a Hurwitz mat rix /\ such that 

/\x - f(x,e) E span {gj(x ,9l, i = l,m } 

A3, (linear parametri za ti on) : th e vector field s fCx ,e) 
are linearly parametrized as follows 

f(x ,e ) = F(x)e and gj(x,e) = Gi(X)e 

where F(x) and Gi(X) are nxp matri ces independent of e. 

Comm ents 
1) Assumption A 1 is needed to guarantee the 
consistency of the sampled -data mode l of system (2 .1 ) 
which will be introduced in the next sec tion. 

2) Assumption A 2 guarantees that stabilizing state 
feedback line arizat ion of sys tem (2. 1) is achieved by 
the following state feedback control law 
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Indeed, it is easily seen that, with control law (2.2), the 
closed loop is linear and stable as follows : 

~ = f(x,So) + G(x,So) uo(x,So) = IIx (2.3) 

In the special case where n=m (that is there are as 
many inputs as there are states), the matrix G(x,SO) is 
square full rank and the control law reduces to 

(2.4) 

3) Assumption A3 states that the parameter S appears 
linearly in system (2.1). This will allow us to write the 
model in regressor form and, hence, to use recursive 
linear regression to implement adaptive control laws. 

Remark 
Assumptions A 2 and A3 are not as restrictive as they 
might appear. There is a wide number of practical 
applications (from electromechanical systems to 
(bio)chemical kinetics) where linearly parametrized 
models are relevant Moreover, assumption A2 can be 
easily relaxed by considering feedback linearization 
through diffeomorphism. But the price to pay would 
be a considerable amount of technical complications 
without really galntng insight into the control 
problem we want to handle. 

3,EXACT SAMPLING OF NON LINEAR CONTINUOUS 
SYSTEMS. 

We are concerned with computer control of non linear 
continuous time systems of the form (2.1.), performed 
by sampling and zero-order-hold control action. The 
situation is depicted in fig. I. 

u(t) Non linear System x(t) 

The state x(t) and the control u(t) are supposed to be 
sampled at the same rate, with a sampling period f>. 
The sampled state is defined at the sampling instants 

x(k) " x(t = f>k) (3.1) 

The ZOH control is defined as follows 

u(t) = u(kfl) "u(k) kf> ~ t < (k + 1) f> (3.2) 

Notice that the argument "f>" IS omitted in x(k) and 
u(k) without risk of confusion. 

With definitions (3.1) and (3.2), the sampled-data 
version of (2. I) can be shown to be written as follows 
(e.g . Monaco and Normand Cyrot, 1985) 

i 

Dx(k) ={i ~~l [L f + f ui(k) Lgi ] } x(k) (3.3) 
J~l 1=1 

where L f and L gi denote Lie derivatives , and where 
Dx(k) is the finite difference operator 

Dx(k) = x (k+ 1) - x(k) <3.4) 
o 

The model (3.3) is called an "exact" sampled-data model 
because its state x(k) exactly cO'fncides with the state of 
the continuous system (2.1) at the sampling instants. 

For convenience, this model will be occasionally 
written in the following compact form 

Dx(k) = h (x(k), u(k), 0 ) (3.5) 

4.ST ATEMENT OF THE ADAPTIVE CONTROL 
PROBLEM. 

In this paper, our objective is to design adaptive 
linearizing controllers for the sampled-data model 
(3.3). A specific study is required because a direct 
transposition of the available continuous time results 
(e.g. Bastin and Campion, 1989) is not possible. This is 
due to the following features of the discrete model 
(3.3) 

FI. The RHS of (3.3) is an infinite series with respect 
to the sampling period f>. This means that the 
model may not be tractable for control design 
purpose and that truncation and approximation 
may be necessary. 

F2. Although the system (2.1) is linear in the control 
input u(t), its discretized counterpart (3.3) is not 
linear in the control input. This implies that state 
feedback linearizability of (3.3) is not guaranteed 
a priori, despite assumption A2. 

F3. Although the system (2.1) is linearly parametrized, 
its discretized counterpart (3.3) is not linearly 
parametrized. This will obviously introduce 
difficulties in the parameter adaptation design. 

Hence. we shall address the 
parametrized discrete state 
denoted : 

u (x(k), ~(So), 0) 

problem of finding a 
feedback control law, 

(4.1) 

which is able to realize approximate adaptive feedback 
linearization of the sampled-data model (3.3). 

Let us explain the terminology and the notation. 
By "approximate linearization" we mean that we 
attempt to approach the following "truncated" discrete 
reference model : 

Dx(k) = [t &~! lIi ]X(k) ~ A,(o) x(k) (4.2) 

i=! J 

where 11 is the Hurwitz matrix defined in assumption 
A2. Notice that (4.2) tends to the continuous reference 
model (2.3) when f> --> O. For r = ~, (4.2) is uniformly 
asymptotically stable for any 0 , while for limited r, 
the following property hold : 

Lemma 1 

For any r, there exists an upper bound Or < ~ such that 
(4.2) is uniformly asymptotically stable for all 05 Or 

We introduce the following rigourous definition of 
approximate linearization. 

Definition 

The discretized model (3.3) is said to be r-th degree 
linearizable if there exists a control law u(x(k), 0, 
fi(So)) such that the closed loop dynamics cofncides 
with the linear reference model (4.2) up to the degree 
r, that is it can be written 

"r" will be called the linearization degree. 
Nowtion : throughout the paper we use R(oS) to denote 
a residual n-vector whose norm is of the order of OS i.e . 

11 R(os) ~ ~ O(f>s) 

Though the control law linearizes the discretized 
model only approximately,it will be designed in order 
to match exactly the continuous time linearizing 
control uO (X,SO) given by (2.2) or (2.3) when f> -->0 : 

lim u (x(k), ~<eo), f» = uo(x,90 ) 
&-+0 

(4.4) 
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Finally, the control law (4.1) is parametrized by a 
parameter ~ which is an (over)reparametrization of 
the "physical" parameter 9 O. Then, an adaptive 
control algorithm will be obtained by replacing j3(00) 
by an on line estimate ~ (certainty equivalence 
principle) which will be computed with a recursive 
algorithm presented in the next section. 

5, DISCRETE PARAMETER ESTIMATION. 

Although the discrete model (3 .3) is non linear with 
respect to the parameter 90, it can be seen, from 

assumption A3, that there exists an infinire sequence 
of linear reparametrizations, denoted 'j3j (00) , j = I , ... , ~, 
such that (3.3) is rewritten as follows : 

~ QI-I T -
Dx(k) = L. -,-, Glj (k) ~j (90) 

j=l J. 
(5. Il 

where ~j (90) is the vector of the components of the jth 

tensor product of 90 by itself and Gl j (k) is an 
appropriate regressor (function of x(k) and u(k». 

Notice in particular that 

~1(90) = 00 and Gli(k) PI(90) = f(x(k),Oo) + G(x(k) ,Oo) u(k) 

Operating on both sides of (5.1) with the operator 

(D+ w )-1 where w is any positive constant such that 
wl)<i, the discrete model (5.1) is easily shown to be 
equivalent to : 

~ QI- I T -
x(k) = GloF(k) + L. -,-, GljF (k) ~j (°0 ) 

j=1 J. 
(5.2) 

where Gl j F(k) (j=0, ... ,~) can be computed on line by 
filtering x(k) and Gl j(k) as follows 

GlOF (k) =~ x (k) 
D+w 

I 
GljF (k) = D+w Glj (k) j = l, ... ,~ 

The model (5.3) is now rewritten as follows 

wh e re 

\jIo (k) = GloF(k) 

T (T I) T I)q-I T ) 
\jI (k) = GlIF (k), 2! Gl2F (k)'''''--;jI GlqF (k) 

(5.3.a) 

(5.3.b) 

(5.4) 

(5.5.a) 

(5.5.b) 

(5.5.c) 

If the term RI (I) q) in (5.4), is ignored, the model is 
clearly in a standard linear regressor form . 

Bounds on \jI (k) and RI (I)q) are given in the following 
lemma. 

Lemma 2 

For all x E B x' for all 0, if u(k) is uniformly bounded (ie . 
3U // u(k) // <U , V'k), rhere exisrs posirive uniform 
bounds p(O) and M](o) such rhar 

1'It!k) //5p(0) and IIR j (8'I) 1/5~ M j (8) V'k 
(q+l )1 

Our approach is then to state a recursive prediction 
error algorithm based on the linear regression part of 
(5.5), and made robust against the "unmodelled" term 

RI (I)q) by introducing a dead zone. 

With ~ denoting the estimate of ~(90), the algorithm is 
as follows : 

predicrion : ~(k) = \jIo(k) + \jIT(k) ~(k) (5.6.a) 

predicrion error: elk) = x(k) - ~(k) (5.6.b) 

paramerer adaprarion 

D~(k) = aP(k)\jI(k)e(k) if 11 e 11 > d(I»~ (5 .6 .c) 
(q+ Il' 

= 0 otherwise 

Gain adaplarion : 

DP(k) = -aP(k)\jI(k)\jI T(k)P(k) if 11 ell > d(I»~ (5.6.d.) 
(q+I)I 

= 0 otherwise 
with prO) = y I (y > 0) 

"q" will be called the estimation degree. 
The dead zone size d(l» is defined as follows 

(5.7 .a) 

where the step size a must satisfy the following 
inequality 

0< a < __ 1_ (5.7.b) 
l)yp2(1» 

Notice that, if I) ---> 0, this algorithm exactly coi'ncides 
with the parameter adaptation scheme used for 
continuous time adapti ve control in (Bastin and 
Campi on, 1989). 

The following theorem establishes the properties of 
the algorithm. 

Theorem ],: 

For all x E B x ' for all 0, if u(k) is uniformly bounded, 

(i) rhe esrimarion error {3(k) = {3(IJO) - {3(k) is bounded as 

follows' Ili3(k) 112 5 I~(O) 112 (58) 

(ii) rhe predicrion error is bounded as follows 

// e (k) 115 pro) I~ (0) ff + M, (0) ~ 
(q+l)' 

(jiiJ Um sup le(k)115d(0)~ 
k--.~ (q+l)1 

6, ADAPTIVE r-LINEARIZING COI':TROL. 

(59) 

(510) 

In this section, we shall first focus on the particular 
class of systems which have as many inputs as there 
are states. G(x,O) is then square matrix and 
assumption A2 reduces to 

A 2 b i s For every (x,O) in Bx x Be, the matrix G(x,O) is 

regular. 1\ is an arbitrary Hurwitz matrix. 

The section will be organized is four parts. We first 
present two preliminary properties which are useful 
for the analysis of both non adaptive and adaptive 
situations (section 6.1). Then in section (6.2) we 
discuss the existence and the properties of non
adaptive (i .e. with perfect knowledge of 90) r
linearizing controllers. Thereafter, the adaptive case 
is investigated in section 6.3 . Finally the case where 
assumption A2 is postulated instead of A2bis is 
discussed in section 6.4. 
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6.1. Preliminaries. 

In this section we present two preliminary properties 
useful for the analysis . Lemma 3 is a stability 
property while lemma 4 is an algebraic property 
related to the existence of Iineari z ing control laws. 

Lemma 3 

For the system 
Dx(k) = Ax(k) + v, (k) + DV2 (k) 

If .(/+liA) is a stable matrix i .e. there exist 

K, (;;,1) and a (O <a51) such that· //(1 + oA/ /1 5 K, ak \lk 

.vJ(k) and V2(k) are uniformly bounded 
Iv,(k) /I 5 C, and HV2 (k ) /l 5C2 \l k 

Then . 
a) /I x(k) /I is uniformly bounded as follows 

K, 
/I x(k) /I 5 K j /lx(O) /I +0- (C, + lA /I C2) + (K,+ /) C2 I - a 

If. in addition . 
Um sup Iv,(k) 1/ = c, and Um sup HV 2(k) 1/= c2 

k~ oo k_oo 

K,o 
b ) Um sup I x(k) //5 - (c , + /lA //.C2 ) + c2 

k ... _ I-a 

We now present an algebraic property which is 
critical to guarantee the exi s tence of both non 
adaptive r-lineari z ing control law s. 

We define the infinite sequence of vectors bj(j= 1 ..... ~ ) 
which satisfy the following conditions : 

Cl. bI E Be 
C2 . The dimension of bj is equal to the dimension of 

Pj{90) 
C3. there exists a positive constant dO such that 

I bj I < ctio Vj 

These vectors will serve as true 
well as estimates of them in 
respecti vely 

(6. J) 

parameters i3j(90) as 
theorems 2 and 4 

Lemma 4 : 

Under assumptions A/-A2bis-A3 and conditions C I-C2-
C3 . for every 0 and every ~ E Bx . 
there exists an infinite sequence of fun ctions 

Vi (~.b, .. .. . bi+') 

such that. for every r . the fun ction defin ed as 

, -I <1L i v (~ . o. b, .. . b,) = - .-- Vi (~ .b, .. .. b i+' ) 
(1+])' 

i=O 
( i ) is unifo rmly bounded i e . th ere ex ists v( 0) 

Notice in particular that 

(6 .2 ) 

such 

(6 3) 

(64) 

With appropriate choice of x.b I .. ... b r . v will give the r
linearizing control law in 6.2 and th e adaptive control 
law in 6.3 

6 . 2. Perfectly known systems. 

It can easily be checked that ")3i(90) satisfies (6.1) with 
dO=p119011. The r-Iineari z ing control law is then obtai
ned replacing in (6.2) ~ by x(k) the state of the system 
and the arbitrary values bk by the actual values of the 

corresponding ~k (90) : 

- -
u (k ) = v(x(k ).Il . P I(90) ... . p,(90» 

,-t 

" " Il
i 

- -= ~('i:;:1ii' vi ( x(k ). P1(90) .. · .. Pi+I(90» (6.5) 

i=O 

The following theorem then follows 

Theorem 2: 

Under assumptions Al-A2bis -A3 . Fo r every O. for every 
x in Bx . for every r . th e control law u(k) defined in 
(6 .5) is uniformly bounded and 

(( i )realizes the r-linearizati o n of ih e system 

i.e. Dx(k ) = A , ox (k ) +R 3 (0') (6 6) 

(U) ensures that R3( or) is bounded as f ollows 

I R3 (8') U 5 M3 (0) (r~ ) ! with M3 (o) < ~ 

Now we look for the domain of admiss ible initial 
values x(O ) ensuring that x(k) remains continuous ly 
in Bx and derive the asymptotic convergence 
properties of (6 .5) . 

For every r and every Il 5 Ilr defined in lemma 1. the 

application of lemma 3 to (6.6) with vj(k)=R3(llr) and 
v2(k)=0 give rise to the following bounds 

1lr+1 - 1l'+1 
I x(k) 11 5 Kt I x(O) 11 + K2(1l) -- 5 Kt 11 x(O) 11 + K2--(r+ I ) ' (r+ I)! 

1lr+1 
lim sup 11 x(k) 115 K2(1l) --

k ... _ (r+ I)! 

where K I follows from lemma 

KI 
K 2(1l) = t:;M 3(1l) 

Theorem 3 

is a closed ball of 

( 
11 1(1l» ) 

BO .~ 

Under assumptions AI-A2bis·A3 . for every r. for every 
0 < 02 . the co ntrol law (65) ensures that 

if X(O) E BC . 

0) X(k)E Bx and th eorem (2 ) holds \I k 

8'+' - 8'+' 
(U ) Um sup I x (k ) // 5 K2 (0)-- 5 K2 --

k ... _ (r + I ) ' (r + I ) 1 

In Grizzle (1986). lineari z ability conditions are given 
for discrete systems and it is shown that sampling of 
continuous sy s tems can destroy their feedback 
linearizability . In the pre sent paper we focus on 
approximate Iinearization and give co nditions (on the 
sampling period and the initial error) for r
linearizability ( theorem 3) . 
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6.3. Systems with parameter uncertainty. 

For fixed values of O. rand q. using the certainty 
equivalence principle. an adaptive control law u(k) is 
obtained. from expression 6.2. by replacing 

. ~ by x(k) 

.bi by the estimate Pi of13i(80) provided by the 
parameter adaptation algorithm (S.6) 'V i = I ... q 

.bi by 0 'V i > q 

The adaptation algorithm (S.6) is implemented with 
p (0) and M 1 (0) defined according to lemma 2 where 
the upper bound U is chosen as the maximum of 
IIv(~./i.bl •...• br)11 for ~E Bx and (bl •..• br) belonging to the 
following compact set : 

{ (bl ... br) : 38E Be such that 11 (bl-~1(8» • .... • (br-~r<8» 11 5:k2} 

The existence of this bound is ensured by lemma 4. 

The closed loop dynamics is then written as follows : 

From the properties of the parameter adaptation . we 
have the following theorem : 

Theorem 4 : 

Under assumptions Al -A2bis-A3. 

for every o.r,q, if X(k)E Bx and Im (k) II < k2 °o Ilk, 

the control law u(k) is uniformly bounded and 

(i) leads to the following closed loop dynamics 

Dx(k) = A/o) x(k) + (wIn + ne)) e(k) + De(k) + R4 (({) 

where ne) = all'T (k+J)P(kh,,(k) if lie II <: d(o) ~ 
(q+l )1 

= 0 otherwise 

(ii) ensures that R4 (or) is bounded as follows 

/R 4 (ol II <: M4 (0) ~ with M4(0) < ~ 
(r+l )I 

(6 .7) 

Using an argumentation parallel to that of section 6.2. 
we analyze the convergence conditions of this 
adaptive algorithm. 

For every rand /i 5: Or. lemma 3 can be applied to (6.7) 
with the following definitions and bounds 

. V2(k) =e(k) with C2 and C2 defined in (5 .9) and (S.IO) 
· vI(k) = (wIn + r(e» elk) 

· Cl = (w+ayp2(/i) ) C2 

· Cl = W C2 

OHI oq 
and lim sup I x(k) 11 5: K2(0) -- + KS(o) --

k__ (r+I)' (q+ I)1 

where K I and K2 (0) are defined in section 6. I. and 
6.2 

oKI 2 
K3(/i) = - [(w + ayp (0» + 11 A,(o) 11 + KI + Il M2(0) 

I-a 
oKI 

K4(/i) = - [(w + ayp2(0» + IIA,(o) 11 + KI + Il MI(o) 
I- a 

oKI 
Ks(o) = - [(w + 111\,(0) 11 + 11 d(o) 

I-a 

K2(O) . K3(o) . K4(O), KS(o) can be re spectively bounded 
on [ O.or] by 1(2. 1<3. K4 . K5 

_ 0;+1 _ /i~ 

We define 0, such that K2 (H I )1 + K4 (q+ 1)1 = kl 

and 03 = min (Or' 0,) 

This guarantees the existence of the closed set 

Theorem 5 : 

Under assumptions Al -A2bis-A3. 
for every r, for every 0 < 03, 
if (x(O). f3(O)) E DO , 

(i) x(k) E Bx' 11{J(k) !I <: kz and theorem 4 holds 11 k 

({+! + K ~ 
<: K2 (r+l)' 5 (q+l)1 

As in theorem 3 for the non-adaptive case. this 
theorem provides the convergence properties and the 
conditions (on the sampling period and on the initial 
errors of the state and parameters) for approximate 
linearizability . 

Remarks 

R.I Up to now. the values of the linearization degree r 
and of the estimation degree q have been left to 
the choice of the user and are independent. 
However from the results of theorem 5. it clearly 
appears that a good and coherent choice is 

q=r+1. 
R.2 It must be pointed out that regardless of the choice 

of rand q. the two control laws of section 6.2. and 
6.3. cO'incide respectively with the continuous time 
linearizing control uo (x . 8 0) and with the 
continuous linearizing adaptive control law of 
(Bastin and Campion 1989). when 0 -> O . 

6.4. Adaptive r-Iinearizing control (m < n). 

For systems with G(x.8) not square. it can be easily 
shown that the results of lemma 4 hold only for r 5: 2. 
Theorem 2 to S do not explicitely use that G(x.8) is 
square and may thus be rewritten replacing " 'V r" by 
"forr5:2". 

7. CONCLUSIONS. 

An indirect adaptive approximate state feedback 
linearization scheme has been derived for a class of 
sampled-data non linear models obtained from 
sampling of state-feedback Iinearizable and linearly 
parametrized continuous time systems. The 
applicability conditions and convergence properties 
have been discussed in details . 
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APPENDIX_ 

Proof of lemma 2 : 

v j. cp j is a continuous function non linear in x and 
polynomial of degree j in the componenis of u. 
For x(k) and u(k) belonging to compact sets (X(k)E B x 
and lIu(k)II~U) . cp j is unifomlly bounded as follows 

O3).L<~ such that 11 'P/k) 11 < J.1) Vk 

From (S.3.b). with 'PjF(O) =0. we obtain 

11 'PjF(k) 11 ~ i. Vk 
w 

a. Bound on 'II(k) 

Using (S.S.b) we obtain 

~ &-1 I q &-1 " 
I 'V(k) 11 ~ L-.-I 'PF(k) 11 ~ - "-.-J.1j pro) 

. J!) w L J' 
)=1 )=t 

b. Bound on R](8q) 

Since 11 ~/(0) 11 ~ pi 1190 ~ j we obtain from (a I) : 

I Rt(oq) 11 

(a.l) 

~ ~..!..( 119 I)q [ I + OJ.1P 1190 I + 02().Lp 1190 11 )2 + ... ] 
(q+J)! w).LP 0 q+2 (q+2)(q+3) 

~ ~ ..!..().LP 1190 I )q exp [o).LP 11 90 I1 I ~ (Q+oql )1 M t (0) 
(Q+ J)! W 

Proof of theorem I : 

a. We first show by induction that P(k» O. V k . 

Let P(k) be positive definite. 

Since aoP(k)'V(k)'V T(k)P(k ) is positive semidefinite. 
P(k+ I) is positive definite if[ the spectral radius of 
ao'V(k)'V T (k)P(k) is ~ I which is verified since a 
satisfies (S.7.b). 
Then. since pO. obviously 0 < P(k + I) ~ P(k) $ P(O )a nd 
therefore .s ince P(k) is invertible . 

p(Ofl $ p(k)-l$ P(k+ 1)-1 Vk (a.2) 

b. Let V(k) = P(k)Tp(k ) -lp(k ) 

Then V(k+l)-V(k ) = -ao r e(k)Te(kl - RI(oq)T H(k )Rt(oq) I 

where H(k) ~ (I - ao'VT (k)P(k)'I'(k»-1 

and 11 H(k) 11 $ I 
l-aoyp2(ol 

Hence. the dead zone (5.7 .a) ensures that 3 E > 0 such 
th at 

V(k+])-V(k)<-E<O if I l e li> d (ol~ 
(q+ 1)1 

= 0 otherwise (a.3) 

(5.8) and (5.9) follows then directly from (a.2). (a.3) 
and lemma 2. 

c. It follows from (a.3) that after a limited number of 
adaptation steps ($ V(O)/E) . the prediction error e(k) 
lies definitively within the dead zone and that ens ures 
(5.10). 

Proof of Theorem 2 : 

The functions 'P j defined in (5.1) are non linear in x 
and polynomial in u. Evaluating them in x=~ and 

" oi ...;. &-t 
u = L (i+ I )' Vi • th e expression L - .-, 'P;(x.ul bj can be 

i=O j=t J . 
rewritten using (5.1) and (3.3) as a power series in 0 of 
the following structure : 

~ &-1 
L -.-, [F}~ .vo. Vt.· ··.Vj_2 . b t ... bp) + G(~.bt) vp_1 I 
j=1 J . 

where .the Fj are analytic in its variables and 
Fl(~.bl) = f(~.btl 

.G(~.bl) is analytic and invertible since blE Be . 
Identifying this power se rie s term by term with 

~ ·-1 

",(0) ~ = I ~J\j~ • 
)=t J . 

we obtain a solvable system of equations in Vi (i=O .... ) 
which ensured. by induction . the existence of the 
sequence of functions vi 

vO(~.bl) = G(~.blfl [J\~-f(~. bt) I = uo(~.bt) 

Vj_ I(~ . bt •... bj) = G(~.blft [J\j~ - F/~.vo ... . Vj_2.bl ' .bj) J 

For every r. it follows then directly from the construc
tion of the function Vi that v(~.o.bl •.. br) defined in 
(6.2) ensures (6.4). 

Since Bx is a compact set, since CI-C2-C3 imply that bi 
(i= I ... r) belongs to compact sets and since the 
functions Vi are continuous . the function v(~.8.bl.··br) 
is uniformly bounded in ~. b I .. · br. 
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